»
% Sun

microsystems

JavaServer™ Faces Specification

Version 2.0
/ Ed Burns, Roger Kitain, editors

See <https://javaserverfaces-spec-public.dev.java.net/>

to comment on and discuss this specification.

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054 U.S.A.
650-960-1300

June 2009

Submit comments about this document to j sr- 314- comment s@ cp. or g

SUN IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE
AGREEMENT ("AGREEMENT"). PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY. BY DOWNLOADING THIS SPECIFICATION, YOU
ACCEPT THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY THEM, SELECT THE "DECLINE" BUTTON AT THE
BOTTOM OF THIS PAGE AND THE DOWNLOADING PROCESS WILL NOT CONTINUE.

Specification: JSR-0003 14 JavaServer(tm) Faces Specification ("Specification")
Version: 2.0

Status: Final Draft

Release: 25 June 2009

Copyright 2009 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S. A
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or more U.S. patents, foreign patents, or pending applications. Except as provided
under the following license, no part of the Specification may be reproduced in any form by any means without the prior written authorization of Sun Microsystems, Inc. ("Sun") and its
licensors, if any. Any use of the Specification and the information described therein will be governed by the terms and conditions of this Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1 and 2 below, Sun hereby grants you a fully-paid, non-exclusive, non-transferable, limited
license (without the right to sublicense) under Sun's intellectual property rights to:

1.Review the Specification for the purposes of evaluation. This includes: (i) developing implementations of the Specification for your internal, non-commercial use; (ii) discussing the
Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or written communications which discuss the Specification provided that such excerpts do
not in the aggregate constitute a significant portion of the Technology.

2.Distribute implementations of the Specification to third parties for their testing and evaluation use, provided that any such implementation:

(i) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented;

(ii)is clearly and prominently marked with the word "UNTESTED" or "EARLY ACCESS" or "INCOMPATIBLE" or "UNSTABLE" or "BETA" in any list of available builds and in
proximity to every link initiating its download, where the list or link is under Licensee's control; and

(iii)includes the following notice:

"This is an implementation of an early-draft specification developed under the Java Community Process (JCP) and is made available for testing and evaluation purposes only. The code is not
compatible with any specification of the JCP."

The grant set forth above concerning your distribution of implementations of the specification is contingent upon your agreement to terminate development and distribution of your "early
draft" implementation as soon as feasible following final completion of the specification. Ifyou fail to do so, the foregoing grant shall be considered null and void.

No provision of this Agreement shall be understood to restrict your ability to make and distribute to third parties applications written to the Specification.

Other than this limited license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual property, and the Specification may only be used in accordance
with the license terms set forth herein. This license will expire on the earlier of: (a) two (2) years from the date of Release listed above; (b) the date on which the final version of the
Specification is publicly released; or (¢) the date on which the Java Specification Request (JSR) to which the Specification corresponds is withdrawn. In addition, this license will terminate
immediately without notice from Sun if you fail to comply with any provision of this license. Upon termination, you must cease use of or destroy the Specification.

"o non

"Licensor Name Space" means the public class or interface declarations whose names begin with "java", "javax",
adopted by Sun through the Java Community Process, or any recognized successors or replacements thereof
TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, JavaServer are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

com.sun" or their equivalents in any subsequent naming convention

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE
CORRECTED BY SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE

SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS
AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will
be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold Sun (and its licensors) harmless from any claims based on your use of the Specification for any purposes other than the limited right of evaluation as described above, and from
any claims that later versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

June 2009

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your evaluation of the Specification ("Feedback"). To the extent that you provide
Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully
paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related to
the Specification and future versions, implementations, and test suites thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice of law
rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees to comply strictly with all such laws and
regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written communications, proposals, conditions,
representations and warranties and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other communication between the parties relating to its subject
matter during the term of this Agreement. No modification to this Agreement will be binding, unless in writing and signed by an authorized representative of each party.

June 2009

June 2009

Contents

Preface 1
Changes between 1.2 Final and Early Draft Review 2 1
Section 2.1 “Request Processing Lifecycle Scenarios” 1
Section 2.2 “Standard Request Processing Lifecycle Phases” 1
Section 2.2.1 “Restore View” 1
Section 2.2.2 “Apply Request Values” 1
Section 2.2.2.1 “Apply Request Values Partial Processing” 2
Section 2.2.3 “Process Validations” 2
Section 2.2.3.1 “Partial Validations Partial Processing” 2
Section 2.2.4 “Update Model Values” 2
Section 2.2.4.1 “Update Model Values Partial Processing” 2
Section 2.2.6 “Render Response” 2
Section 2.5.2.4 “Localized Application Messages” 2
Section 2.5.4 “Resource Handling” 2
Section 2.5.5 “View Parameters” 2
Section 2.5.6 “Bookmarkability” 3
Section 2.5.7 “JSR 303 Bean Validation” 3
Section 2.5.8 “Ajax” 3
Section 2.5.9 “Component Behaviors” 3
New Section 2.6 “Resource Handling” 3
New Section 2.6.2 “Rendering Resources” 3
New Section 2.6.2.1 “Relocatable Resources” 3
New Section 2.6.2.2 “Resource Rendering Using Annotations” 3
Section 3.1.8 “Component Tree Navigation” 3
Section 3.1.10 “Managing Component Behavior” 4

Section 3.1.11 “Generic Attributes” 4

Contents v

Section 3.1.11.1 “Special Attributes” 4

Section 3.1.13 “Component Specialization Methods” 4
Section 3.1.14 “Lifecycle Management Methods” 4
Section 3.1.15 “Utility Methods” 4

Section 3.2.6.1 “Properties” 4

Section 3.2.7.2 “Methods” 4

Section 3.2.8 “SystemEventListenerHolder” 4

Section 3.3.2 “Converter” 4

Section 3.4.1 “Overview” 5

Section 3.4.2.6 “Event Broadcasting” 5

Section 3.4.3.1 “Event Classes” 5

Section 3.4.3.4 “Declarative Listener Registration” 5
Section 3.4.3.5 “Listener Registration By Annotation” 5
Section 3.5.2 “Validator Classes” 5

Section 3.5.2 “Validator Classes” 5

Section 3.5.2 “Validator Classes” 5

Section 3.5.3 “Validation Registration” 5

Section 3.5.5 “Standard Validator Implementations” 6
Section 3.5.6 “Bean Validation Integration” 6

Section 3.7 “Component Behavior Model” 6

Section 4.1.19.2 “Properties” 6

Specify the vi ewvap property on UIViewRoot. 6
Section 4.1.19.3 “Methods” 6

Section 4.1.19.4 “Events” 6

Section 4.1.19.5 “Partial Processing” 6

Section 4.2.1.2 “Methods” 6

Section 3.6 “Composite User Interface Components” 6
Section 5.2.1 “MethodExpression Syntax and Semantics” 6
Section 5.4.1 “Managed Bean Lifecycle Annotations” 7

Section 5.6.1.1 “Faces Implicit Object ELResolver For JSP”” and Section 5.6.2.1 “Implicit Object ELResolver
for Facelets and Programmatic Access” 7

Section 5.6.1.2 “ManagedBean ELResolver” 7

Section 5.6.2.1 “Implicit Object ELResolver for Facelets and Programmatic Access” 7
Section 5.6.2.5 “Resource ELResolver” 7

This section specifies the behavior of the Resource EL Resolver 7

Section 5.6.2.2 “Composite Component Attributes ELResolver” 7

[v JavaServer Faces Specification + June 2009

Section 5.6.2.9 “ScopedAttribute ELResolver” 7
Section 6.1.2 “Attributes” 7

Section 6.1.8 “ResponseStream and ResponseWriter” 8
Section 6.1.10 “Partial Processing Methods” 8

Section 6.1.11 “Partial View Context” 8§

Section 6.1.12 “Access To The Current FacesContext Instance” 8
Section 6.1.13 “CurrentPhaseld” 8

Section 6.2 “ExceptionHandler” 8

Section 6.7 “ExceptionHandlerFactory” 8

Section 6.8 “ExternalContextFactory” 8

Section 7.1.8 “ProjectStage Property” 8

Section 7.1.13 “System Event Methods” 8

Section 7.4.2 “Default NavigationHandler Algorithm” 9
Section 7.5.1 “Overview” 9

Section 7.5.2 “Default ViewHandler Implementation” 9
Section 7.6 “ViewDeclarationLanguage” 9

Section 8.1 “RenderKit” 9

Section 8.2 “Renderer” 9

Section 8.3 “ClientBehaviorRenderer” 9

Section 9.4.3 “<f:convertDateTime>" 9

Section 9.4.4 “<f:convertNumber>" 10

Section 9.4.14 “<f:validateDoubleRange>" 10

Section 9.4.16 “<f:validateRegex>" 10

Section 9.4.17 “<f:validateLongRange>" 10

Section 9.4.21 “<f:view>" 10

Section “Facelets and its use in Web Applications” 10
Section 10.4.1.1 “<f:ajax>" 10

Section “Override default Ajax action. “button1” is associated with the Ajax “execute=’cancel’” action:”
10

Section 10.4.1.5 “<f:validateRequired>" 10

Section 11.1.3 “Application Configuration Parameters” 11
Section 11.4.2 “Application Startup Behavior” 11

Section 11.4.5 “Configuration Impact on JSF Runtime” 11
Section 11.4.6 “Delegating Implementation Support” 11
Section 11.4.7 “Ordering of Artifacts” 11

Contents vi

Section 11.5 “Annotations that correspond to and may take the place of entries in the Application
Configuration Resources” 11

Section 12.2 “PhaseEvent” 12

Chapter 13 “Ajax Integration 12

Section 13.1 “JavaScript Resource” 12

Section 13.1.1 “JavaScript Resource Loading” 12

Section 13.1.1.1 “The Annotation Approach” 12

Section 13.1.1.2 “The Resource API Approach” 12

Section 13.1.1.3 “The Page D eclaration Language Approach” 12
Section 13.2 “JavaScript Namespacing” 12

Section 13.3 “Ajax Interaction” 12

Section 13.3.1 “Sending an Ajax Request” 13

Section 13.3.2 “Ajax Request Queueing” 13

Section 13.3.3 “Request Callback Function” 13

Section 13.3.4 “Receiving The Ajax Response” 13

Section 13.3.5 “Monitoring Events On The Client” 13
Section 13.3.5.1 “Monitoring Events For An Ajax Request” 13
Section 13.3.5.2 “Monitoring Events For All Ajax Requests” 13
Section 13.3.5.3 “Sending Events” 13

Section 13.3.6 “Handling Errors On the Client” 13

Section 13.3.6.1 “Handling Errors For An Ajax Request” 13
Section 13.3.6.2 “Handling Errors For All Ajax Requests” 14
Section 13.3.6.3 “Signaling Errors” 14

Section 13.3.7 “Handling Errors On The Server” 14

Section 13.4 “Partial View Traversal” 14

Section 13.4.1 “Partial Traversal Strategy” 14

Section 13.4.2 “Partial View Processing” 14

Section 13.4.3 “Partial View Rendering” 14

Section 13.4.4 “Sending The Response to The Client” 14
Section 13.4.4.1 “Writing The Partial Response” 14

Chapter 14 “JavaScript API 15

Section 14.1 “Collecting and Encoding View State” 15
Section 14.1.1 “Use Case” 15

Section 14.2 “Initiating an Ajax Request” 15

Section 14.2.1 “Usage” 15

Section 14.2.3 “Default Values” 15

lvii JavaServer Faces Specification * June 2009

Section 14.2.4 “Request Sending Specifics” 15

Section 14.2.5 “Use Case” 15

Section 14.5 “Determining An Application’s Project Stage”
Section 14.4 “Registering Callback Functions” 15
Section 14.4.1 “Request/Response Event Handling” 16
Section 14.4.1.1 “Use Case” 16

Section 14.4.2 “Error Handling” 16

Section 14.4.2.1 “Use Case” 16

Section 14.5 “Determining An Application’s Project Stage”
Section 14.5.1 “Use Case” 16

Section 14.6 “Script Chaining” 16

15

16

Section 1.1 “XML Schema Definition for Application Configuration Resource file” 16

Section 1.3 “XML Schema Definition for Partial Responses”

Standard HTML RenderKit specification 17

16

component-family: javax.faces.Graphic renderer-type: javax.faces.Image 17

component-family: javax.faces.Output renderer-type: javax.faces.Body 17

component-family: javax.faces.Output renderer-type: javax.faces.Head 17

component-family: javax.faces.Output renderer-type: javax.faces.resource.Script 17

component-family: javax.faces.Output renderer-type: javax.faces.resource.Stylesheet 17

General Changes 17

Compatibility with and Migration from JavaServer Faces 1.2 18

Related Technologies 18

Other Java™ Platform Specifications 18
Related Documents and Specifications 18
Terminology 19

Providing Feedback 19

Acknowledgements 19

1. Overview 1-21

1.1
1.2

Solving Practical Problems of the Web 1-21
Specification Audience 1-22

1.2.1 Page Authors 1-22

1.2.2 Component Writers 1-22

1.2.3 Application Developers 1-23

1.2.4 Tool Providers 1-23

1.2.5 JSF Implementors 1-24

Contents

viii

1.3 Introduction to JSF APIs 1-24
1.3.1 packagej avax.faces 1-24
1.3.2 packagej avax. faces. application 1-24
1.3.3 package j avax. f aces. conmponent 1-24
1.3.4 package] avax. faces. conponent. htm 1-25
1.3.5 packagej avax. faces. context 1-25
1.3.6 package | avax. faces. convert 1-25
1.3.7 packagej avax.faces.el 1-25
1.3.8 packagej avax.faces.lifecycle 1-25
1.3.9 packagej avax. faces. event 1-25
1.3.10 package j avax.faces.render 1-25
1.3.11 package j avax. faces. validator 1-26

1.3.12 package j avax. f aces. webapp 1-26

2. Request Processing Lifecycle 2-1
2.1 Request Processing Lifecycle Scenarios 2-2
2.1.1 Non-Faces Request Generates Faces Response 2-2
2.1.2 Faces Request Generates Faces Response 2-2
2.1.3 Faces Request Generates Non-Faces Response 2-3
2.2 Standard Request Processing Lifecycle Phases 24
2.2.1 Restore View 24
2.2.2 Apply Request Values 2-5
2221 Apply Request Values Partial Processing 2-6
2.2.3 Process Validations 2-6
2.2.3.1 Partial Validations Partial Processing 2-6
2.2.4 Update Model Values 2-7
2241 Update Model Values Partial Processing 2-7
2.2.5 Invoke Application 2-7
2.2.6 Render Response 2-8
2.3 Common Event Processing 2-9
2.4 Common Application Activities 2-9
2.4.1 Acquire Faces Object References 2-9
2.4.1.1 Acquire and Configure Lifecycle Reference 2-10
2.4.1.2 Acquire and Configure FacesContext Reference 2-10
2.4.2 Create And Configure A New View 2-10
24.2.1 Create A New View 2-11

Jix JavaServer Faces Specification « June 2009

2422 Configure the Desired RenderKit 2-11
2423 Configure The View’s Components 2—-12

24.2.4 Store the new View in the FacesContext 2-12

2.5 Concepts that impact several lifecycle phases 2-12

2.5.1

252

253

254
255
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10

Value Handling 2-12

2.5.1.1 Apply Request Values Phase 2-12

2.5.1.2 Process Validators Phase 2-12

2.5.13 Executing Validation 2-13

2.5.14 Update Model Values Phase 2-13

Localization and Internationalization (L10N/I18N) 2-13

2.5.2.1 Determining the active Local e 2-13

2.5.2.2 Determining the Character Encoding 2-14

2523 Localized Text 2-14

2524 Localized Application Messages 2-15

State Management 2-17

2.5.3.1 State Management Considerations for the Custom Component Author 2-17
2.5.3.2 State Management Considerations for the JSF Implementor 2-18
Resource Handling 2-19

View Parameters 2-19

Bookmarkability 2-20

JSR 303 Bean Validation 2-20

Ajax 2-21

Component Behaviors 2-21

System Events 2-22

2.6 Resource Handling 2-23

2.6.1

2.6.2

Packaging Resources 2-23

2.6.1.1 Packaging Resources into the Web Application Root 2-23
2.6.1.2 Packaging Resources into the Classpath 2-23

2.6.1.3 Resource Identifiers 2-23

2.6.14 Libraries of Localized and Versioned Resources 2-25
Rendering Resources 2-28

2.6.2.1 Relocatable Resources 2-28

2.6.2.2 Resource Rendering Using Annotations 2-29

3. User Interface Component Model 3-1

3.1 UlComponent and UIComponentBase 3-1

Contents

3.2

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11

3.1.12
3.1.13
3.1.14
3.1.15

Component Behavioral Interfaces

3.2.1

3.2.2

323
324

325
3.2.6

Component Identifiers 3-2
Component Type 3-2
Component Family 3-2
ValueExpression properties
Component Bindings 3-3
Client Identifiers 34

3-2

Component Tree Manipulation 3—4

Component Tree Navigation

Facet Management 3-6

3-5

Managing Component Behavior 3-7

Generic Attributes 3-7

3.1.11.1 Special Attributes

3-8

Render-Independent Properties 3-9

Component Specialization Methods 3-10

Lifecycle Management Methods 3-11

Utility Methods 3-12

ActionSource 3-12
3.2.1.1 Properties 3-13
3.2.1.2 Methods 3-13
3.2.1.3 Events 3-13
ActionSource2 3-14
3.2.2.1 Properties 3-14
3222 Methods 3-14
3223 Events 3-14
NamingContainer 3-15
StateHolder 3-15

3.24.1 Properties 3-15
3242 Methods 3-15
3243 Events 3-16
PartialStateHolder 3-16
ValueHolder 3-16

3.2.6.1 Properties 3-16
3.2.6.2 Methods 3-17
3.2.6.3 Events 3-17

3—

12

[xi JavaServer Faces Specification « June 2009

3.3

34

3.5

3.2.7

3.2.8

3.2.9

EditableValueHolder 3-17

3.2.7.1 Properties 3-17
3.2.7.2 Methods 3-18

3.2.7.3 Events 3-18
SystemEventListenerHolder 3-19
3.2.8.1 Properties 3-19
3.2.82 Methods 3-19

3.2.8.3 Events 3-19
ClientBehaviorHolder 3-19

Conversion Model 3-21

3.3.1
3.3.2
333

Overview 3-21
Converter 3-21

Standard Converter Implementations 3-22

Event and Listener Model 3-24

3.4.1
342

343

Overview 3-24

Application Events 3-26

34.2.1 Event Classes 3-26

3422 Listener Classes 3-27

3423 Phase Identifiers 3-27

3424 Listener Registration 3-27

3425 Event Queueing 3-28

3.4.2.6 Event Broadcasting 3-28

System Events 3-28

343.1 Event Classes 3-28

3432 Listener Classes 3-29

3433 Programmatic Listener Registration 3-29
3434 Declarative Listener Registration 3-30
3435 Listener Registration By Annotation 3-30
3.43.6 Listener Registration By Application Configuration Resources 3-30
3437 Event Broadcasting 3-30

Validation Model 3-31

3.5.1
3.5.2
3.53
3.54

Overview 3-31
Validator Classes 3-31
Validation Registration 3-31

Validation Processing 3-32

Contents

xii

3.6

3.7

3.5.5
3.5.6

3.5.63 Localization of Bean Validation Messages 3-35
Composite User Interface Components 3-36
3.6.1 Non-normative Background 3-36
3.6.1.1 What does it mean to be a JSF User Interface component? 3-36
3.6.1.2 How does one make a custom JSF User Interface component (JSF 1.2 and earlier)?
37
3.6.1.3 How does one make a composite component? 3-37
3.6.1.4 A simple composite component example 3-38
3.6.1.5 Walk through of the run-time for the simple composite component example 3-39
3.6.1.6 Composite Component Terms 3—40
3.6.2 Normative Requirements 3-41
3.6.2.1 Composite Component Metadata 3-42
Component Behavior Model 3-43
3.7.1 Overview 3-43
3.7.2 Behavior Interface 3-44
3.7.3 BehaviorBase 3-44
3.7.4 The Client Behavior Contract 3-44
3.7.5 ClientBehavorHolder 3-45
3.7.6 ClientBehaviorRenderer 3-45
3.7.7 ClientBehaviorContext 3-45
3.7.8 ClientBehaviorHint 3-45
3.7.9 ClientBehaviorBase 3-46
3.7.10 Behavior Event / Listener Model 3-46
3.7.10.1 Event Classes 3-46
3.7.10.2 Listener Classes 3-47
3.7.10.3 Listener Registration 3-47
3.7.11 Ajax Behavior 3-47
3.7.11.1 AjaxBehavior 3-47
3.7.11.2 Ajax Behavior Event / Listener Model 3-47
3.7.12 Adding Behavior To Components 3—48
3.7.13 Behavior Registration 3-48

[iii

Standard Validator Implementations 3-33
Bean Validation Integration 3-33

3.5.6.1 Bean Validator Activation 3-34
3.5.6.2 Obtaining a ValidatorFactory 3-34

3.7.13.1 XML Registration 3-49

JavaServer Faces Specification « June 2009

3—

4. Standard User Interface Components

3.7.13.2 Registration By Annotation

4.1 Standard User Interface Components

4.1.1

UlColumn 4-3

4.1.1.1 Component Type
4.1.1.2 Properties 4-3
4.1.13 Methods 4-3
4.1.14 Events 4-3
UlCommand 4-4

4.1.2.1 Component Type
4122 Properties 44
4.1.2.3 Methods 4-4
4.1.24 Events 4-4
UlData 4-5

4.1.3.1 Component Type
4.1.3.2 Properties 4-5
4.1.33 Methods 4-6
4.134 Events 4-6
UlForm 4-7

4.14.1 Component Type
4.1.4.2 Properties 4-7
4.1.43 Methods. 4-7
4.144 Events 4-8
UlGraphic 4-9

4.1.5.1 Component Type
4152 Properties 4-9
4153 Methods 4-9
4154 Events 4-9
Ullnput 4-10

4.1.6.1 Component Type
4.1.6.2 Properties 4-10
4.1.6.3 Methods 4-11
4.1.6.4 Events 4-11
UlMessage 4-12

4.1.7.1 Component Type

4-1

4-1

4-4

4-5

4-7

4-9

349

Contents

Xiv

4.1.10

4.1.11

4.1.12

4.1.13

4.1.14

xv

4.1.7.2 Properties 4-12
4.1.7.3 Methods. 4-12
4.1.7.4 Events 4-12
UlMessages 4-13

4.1.8.1 Component Type
4.1.8.2 Properties 4-13
4.1.83 Methods. 4-13
4.1.8.4 Events 4-13
UlOutcomeTarget 4-14
4.1.9.1 Component Type
4.1.9.2 Properties 4-14
4.193 Methods 4-14
4194 Events 4-14
UlOutput 4-15

4.1.10.1 Component Type
4.1.10.2 Properties 4-15
4.1.10.3 Methods 4-15
4.1.104 Events 4-15
UlPanel 4-16

4.1.11.1 Component Type
4.1.11.2 Properties 4-16
4.1.11.3 Methods 4-16
4.1.11.4 Events 4-16
UlParameter 4-17
4.1.12.1 Component Type
4.1.12.2 Properties 4-17
4.1.12.3 Methods 4-17
4.1.12.4 Events 4-17
UlSelectBoolean 4-18
4.1.13.1 Component Type
4.1.13.2 Properties 4-18
4.1.13.3 Methods 4-18
4.1.13.4 Events 4-18
UlSelectltem 4-19

4.1.14.1 Component Type

JavaServer Faces Specification « June 2009

4.1.14.2 Properties 4-19
4.1.143 Methods 4-19
4.1.144 Events 4-19

4.1.15 UlSelectltems 4-20
4.1.15.1 Component Type 4-20
4.1.15.2 Properties 4-20
4.1.153 Methods 4-20
4.1.154 Events 4-20

4.1.16 UlSelectMany 4-21
4.1.16.1 Component Type 4-21
4.1.16.2 Properties 4-21
4.1.16.3 Methods 4-21
4.1.16.4 Events 4-21

4.1.17 UlSelectOne 4-22
4.1.17.1 Component Type 4-22
4.1.17.2 Properties 4-22
4.1.17.3 Methods 4-22
4.1.17.4 Events 4-22

4.1.18 UlViewParameter 4-23

4.1.19 UlViewRoot 4-24
4.1.19.1 Component Type 4-24
4.1.19.2 Properties 4-24
4.1.19.3 Methods 4-25
4.1.19.4 Events 4-25
4.1.19.5 Partial Processing 4-26

4.2 Standard UIComponent Model Beans 4-27

4.2.1 DataModel 4-27
42.1.1 Properties 4-27
4.2.1.2 Methods 4-27
4213 Events 4-27
42.14 Concrete Implementations 4-27

4.2.2 Selectltem 4-29
42.2.1 Properties 4-29
4222 Methods 4-29
4223 Events 4-29

Contents xvi

4.2.3 SelectltemGroup 4-30
4231 Properties 4-30
4232 Methods 4-30
4233 Events 4-30

Expression Language and Managed Bean Facility 5-1
5.1 Value Expressions 5-1
5.1.1 Overview 5-1
5.1.2 Value Expression Syntax and Semantics 5-2
5.2 MethodExpressions 5-2
5.2.1 MethodExpression Syntax and Semantics 5-3
5.3 The Managed Bean Facility 5-4
5.3.1 Managed Bean Configuration Example 5-7
5.4 Leveraging Java EE 5 Annotations in Managed Beans 5-8
5.4.1 Managed Bean Lifecycle Annotations 5-9
5.5 How Faces Leverages the Unified EL 5-10
5.5.1 ELContext 5-10
5.5.1.1 Lifetime, Ownership and Cardinality 5-10
5.5.1.2 Properties 5-11
5.5.13 Methods 5-11
5.5.1.4 Events 5-11
5.52 ELResolver 5-11
5.5.2.1 Lifetime, Ownership, and Cardinality 5-12
5522 Properties 5-12
5523 Methods 5-12
5524 Events 5-12
5.5.3 ExpressionFactory 5-12
5.53.1 Lifetime, Ownership, and Cardinality 5-12
5532 Properties 5-13
5533 Methods 5-13
5534 Events 5-13
5.6 ELResolver Instances Provided by Faces 5-13
5.6.1 Faces ELResolver for JSP Pages 5-13
5.6.1.1 Faces Implicit Object ELResolver For JSP 5-14
5.6.1.2 ManagedBean ELResolver 5-16
5.6.1.3 Resource ELResolver 5-18

[xvii JavaServer Faces Specification * June 2009

6.

5.7

5.8

Per-Request State Information 6-1

6.1

5.6.14 ResourceBundle ELResolver for JSP Pages 5-18
5.6.1.5 ELResolvers in the application configuration resources
5.6.1.6 VariableResolver Chain Wrapper 5-20
5.6.1.7 PropertyResolver Chain Wrapper 5-21
5.6.1.8 ELResolvers from Application.addELResolver() 5-22

5.6.2 ELResolver for Facelets and Programmatic Access 5-22
5.6.2.1 Implicit Object ELResolver for Facelets and Programmatic Access
5.6.2.2 Composite Component Attributes ELResolver 5-27
5.6.2.3 The CompositeELResolver 5-28
5.6.2.4 ManagedBean ELResolver 5-29
5.6.2.5 Resource ELResolver 5-29
5.6.2.6 el.ResourceBundleELResolver 5-30
5.6.2.7 ResourceBundle ELResolver for Programmatic Access
5.6.2.8 Map, List, Array, and Bean ELResolvers 5-30
5.6.2.9 ScopedAttribute ELResolver 5-30

Current Expression Evaluation APIs

5.7.1 ELResolver 5-32

5.7.2 ValueExpression 5-32

5.7.3 MethodExpression 5-32

5.7.4 Expression Evaluation Exceptions 5-32

Deprecated Expression Evaluation APIs 5-32

5.8.1 VariableResolver and the Default VariableResolver 5-33

5.8.2 PropertyResolver and the Default PropertyResolver 5-33

5.8.3 ValueBinding 5-33

5.8.4 MethodBinding 5-34

5.8.5 Expression Evaluation Exceptions 5-34

FacesContext 6-1

6.1.1
6.1.2
6.1.3
6.1.4

6.1.5
6.1.6

Application 6-1
Attributes 6-1
ELContext 6-2

ExternalContext 6-2
6.1.4.1 Flash 64
ViewRoot 64
Message Queue 64

5-20

5-30

5-23

Contents

xviii

6.2

6.3
6.4
6.5
6.6
6.7
6.8

6.1.7
6.1.8
6.1.9
6.1.10
6.1.11
6.1.12
6.1.13
6.1.14

RenderKit 6-5

ResponseStream and ResponseWriter 6-5

Flow Control Methods 6-5
Partial Processing Methods 6-6

Partial View Context 6-6

Access To The Current FacesContext Instance

CurrentPhaseld 6-7

ExceptionHandler 6-7

ExceptionHandler 6-7

6.2.1
6.2.2
6.2.3

Default ExceptionHandler implementation 68

Backwards Compatible ExceptionHandler

Default Error Page 6-9

FacesMessage 6-10

ResponseStream 610

ResponseWriter 611

FacesContextFactory 6-13

ExceptionHandlerFactory 6-13

ExternalContextFactory 6-14

Application Integration 7-1

7.1

Application 7-1

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11

7.1.12
7.1.13

xix

ActionListener Property 7-1
DefaultRenderKitld Property 7-2
NavigationHandler Property 7-2
StateManager Property 7-2
ELResolver Property 7-3
ELContextListener Property 7-3
ViewHandler Property 7-3
ProjectStage Property 74

Acquiring ExpressionFactory Instance 7-

Programmatically Evaluating Expressions
Object Factories 7-5

7.1.11.1 Default Validator Ids 7-6
Internationalization Support 7-7
System Event Methods 7-7

7.1.13.1 Subscribing to system events

JavaServer Faces Specification « June 2009

69

4
74

-7

6—-6

7.2
7.3
7.4

7.5

7.6

7.7

7.8
7.9

7.1.13.2 Unsubscribing from system events

ApplicationFactory 7-8

Application Actions 7-8

NavigationHandler 7-9

7.4.1
7.4.2
7.4.3

Overview 7-9

Default NavigationHandler Algorithm 7-10

7-8

Example NavigationHandler Configuration 7-13

ViewHandler 7-17

7.5.1
7.5.2

Overview 7-17

Default ViewHandler Implementation 7—-19

ViewDeclarationLanguage 7-22

7.6.1
7.6.2

ViewDeclarationLanguageFactory 7-22

Default ViewDeclarationLanguage Implementation 7-23
7.6.2.1 ViewDeclarationLanguage.createView() 7-23
7.6.2.2 ViewDeclarationLanguage.buildView() 7-24

7.6.2.3 ViewDeclarationLanguage.getComponentMetadata() 7-24

7.6.2.4 ViewDeclarationLanguage.getViewMetadata() and getViewParameters() 7-24

7.6.2.5 ViewDeclarationLanguage.getScriptComponentResource() 7-25
7.6.2.6 ViewDeclarationLanguage.renderView() 7-25

7.6.2.7 ViewDeclarationLanguage.restoreView() 7-26

StateManager 7-27

7.7.1
7.7.2
7.7.3
7.7.4
7.7.5

Overview 7-27

State Saving Alternatives and Implications
State Saving Methods. 7-28

State Restoring Methods 7-28

Convenience Methods 7-29

ResourceHandler 7-29

Deprecated APIs 7-29

7.9.1
7.9.2
7.9.3
7.9.4
7.9.5
7.9.6
7.9.7

PropertyResolver Property 7-29
VariableResolver Property 7-30
Acquiring ValueBinding Instances 7-30
Acquiring MethodBinding Instances 7-30
Object Factories 7-31

StateManager 7-31

ResponseStateManager 7-31

7-27

Contents

XX

Rendering Model 8-1
8.1 RenderKit 8-1
8.2 Renderer 8-3
8.3 ClientBehaviorRenderer 84
8.3.1 ClientBehaviorRenderer Registration 8—4
8.4 ResponseStateManager 8-5
8.5 RenderKitFactory 8-6
8.6 Standard HTML RenderKit Implementation 8-6
8.7 The Concrete HTML Component Classes 8-7

Integration with JSP 9-1
9.1 UlIComponent Custom Actions 9-1
9.2 Using UlComponent Custom Actions in JSP Pages 9-2
9.2.1 Declaring the Tag Libraries 9-2
9.2.2 Including Components in a Page 9-3
9.2.3 Creating Components and Overriding Attributes 9-3
9.2.4 Deleting Components on Redisplay 94
9.2.5 Representing Component Hierarchies 9-5
9.2.6 Registering Converters, Event Listeners, and Validators 9-5
9.2.7 Using Facets 9-6
9.2.8 Interoperability with JSP Template Text and Other Tag Libraries 9-6
9.2.9 Composing Pages from Multiple Sources 9-7
9.3 UlIComponent Custom Action Implementation Requirements 9-7
9.3.1 Considerations for Custom Actions written for JavaServer Faces 1.1 and 1.0 9-9
9.3.1.1 Past and Present Tag constraints 9—10
9.3.1.2 Faces 1.0 and 1.1 Taglib migration story 9-10
9.4 JSF Core Tag Library 9-11
9.4.1 <fiactionListener> 9-12
Syntax 9-12
Body Content 9-12
Attributes 9-12
Constraints 9-12
Description 9-12
942 <fuattribute> 9-13
Syntax 9-13
Body Content 9-13

Jxxi JavaServer Faces Specification < June 2009

Attributes 9-13
Constraints 9-13
Description 9-13
943 <ficonvertDateTime> 9-14
Syntax 9-14
Body Content 9-14
Attributes 9-15
Constraints 9-15
Description 9-16
944 <ficonvertNumber> 9-17
Syntax 9-17
Body Content 9-17
Attributes 9-18
Constraints 9-18
Description 9-19
9.4.5 <ficonverter> 9-20
Syntax 9-20
Body Content 9-20
Attributes 9-20
Constraints 9-20
Description 9-20
94.6 <fifacet> 9-21
Syntax 9-21
Body Content 9-21
Attributes 9-21
Constraints 9-21
Description 9-21
9.4.7 <flloadBundle> 9-22
Syntax 9-22
Body Content 9-22
Attributes 9-22
Constraints 9-22
Description 9-22
9.4.8 <fiparam> 9-23
Syntax 9-23

Contents xxii

Body Content 9-23
Attributes 9-23
Constraints 9-23
Description 9-23
9.49 <fphaseListener> 9-24
Syntax 9-24
Body Content 9-24
Attributes 9-24
Constraints 9-24
Description 9-24
9.4.10 <fselectltem> 9-25
Syntax 9-25
Body Content 9-25
Attributes 9-26
Constraints 9-26
Description 9-26
9.4.11 <fselectltems> 9-27
Syntax 9-27
Body Content 9-27
Attributes 9-27
Constraints 9-27
Description 9-27
9.4.12 <f:setPropertyActionListener> 9-28
Syntax 9-28
Body Content 9-28
Attributes 9-28
Constraints 9-28
Description 9-28
9.4.13 <fisubview> 9-30
Syntax 9-30
Body Content 9-30
Attributes 9-30
Constraints 9-30
Description 9-30
9.4.14 <f.validateDoubleRange> 9-33

[xxiii JavaServer Faces Specification < June 2009

Syntax 9-33
Body Content 9-33
Attributes 9-33
Constraints 9-33
Description 9-33

9.4.15 <f:validateDoubleRange> 9-35
Syntax 9-35
Body Content 9-35
Attributes 9-35
Constraints 9-35
Description 9-35

9.4.16 <f.validateRegex> 9-37
Syntax 9-37
Body Content 9-37
Attributes 9-37
Constraints 9-37
Description 9-37

9.4.17 <f.validateLongRange> 9-38
Syntax 9-38
Body Content 9-38
Attributes 9-38
Constraints 9-38
Description 9-38

9.4.18 <fivalidator> 9-40
Syntax 940
Body Content 940
Attributes 9-40
Constraints 940
Description 9-40

9.4.19 <f:valueChangeListener> 9-41
Syntax 941
Body Content 941
Attributes 941
Constraints 941

Description 9-41

Contents xxiv

10.

9.5

Facelets and its use in Web Applications

10.1

10.2

10.3

10.4

9.4.20

9.4.21

<f:verbatim> 9-42
Syntax 9-42
Body Content 9-42
Attributes 942
Constraints 9-42
Description 9-42
<fiview> 9-43

Syntax 9-43
Body Content 9-43
Attributes 943
Constraints 9-43

Description 9-44

Standard HTML RenderKit Tag Library 9-45

Non-normative Background

10.1.1

10.1.2 Differences between Pre JSF 2.0 Facelets and Facelets in JSF 2.0

Java Programming Language Specification for Facelets in JSF 2.0

10.2.1

XHTML Specification for Facelets for JSF 2.0

10.3.1
10.3.2
10.3.3

10.3.3.1
10.3.3.2 Creating an instance of a top level component
10.3.3.3
Standard Facelet Tag Libraries 10-7
10.4.1 JSF Core Tag Library 10-7
10.4.1.1 <fiajax> 10-7
10.4.1.2 <fievent> 10-11
10.4.1.3 <fimetadata> 10-11
10.4.1.4 <fivalidateBean> 10-11
10.4.1.5 <fivalidateRequired> 10-13

Differences between JSP and Facelets

Specification of the ViewDeclarationLanguage Implementation for Facelets for JSF 2.0

General Requirements

Facelet Tag Library mechanism

10-1

10-1

104
104

10-1

104

Requirements specific to composite components

10.4.2 Standard HTML RenderKit Tag Library

10.4.3 Facelet Templating Tag Library

xxv

10-14

JavaServer Faces Specification « June 2009

10-14

10-5

10-3

10-6

Populating a top level component instance with children

10-2

Declaring a composite component library for use in a Facelet page

10-6

10-5

10-3

11.

10.5

10.4.4 Composite Component Tag Library 10-14
10.4.5 JSTL Core and Function Tag Libraries 10-14

Assertions relating to the construction of the view hierarchy 10-14

Using JSF in Web Applications 11-1

11.1

11.3

11.4

Web Application Deployment Descriptor 11-1
11.1.1 Servlet Definition 11-1
11.1.2 Servlet Mapping 11-2
11.1.3 Application Configuration Parameters 11-2
Included Classes and Resources 11-4
11.2.1 Application-Specific Classes and Resources 11-5
11.2.2 Servlet and JSP API Classes (javax.servlet.*) 11-5
11.2.3 JSP Standard Tag Library (JSTL) API Classes (javax.servlet.jsp.jstl.*) 11-5
11.2.4 JSP Standard Tag Library (JSTL) Implementation Classes 11-5
11.2.5 JavaServer Faces API Classes (javax.faces.*) 11-5
11.2.6 JavaServer Faces Implementation Classes 11-5
11.2.6.1 FactoryFinder 11-5
11.2.6.2 FacesServlet 11-6
11.2.6.3 UlComponentELTag 11-7
11.2.6.4 FacetTag 11-7
11.2.6.5 ValidatorTag 11-7
Deprecated APIs in the webapp package 11-8
11.3.1 AttributeTag 11-8
11.3.2 ConverterTag 11-8
11.3.3 Ul Conponent BodyTag 11-8
11.3.4 Ul Conponent Tag 11-8
11.3.5 ValidatorTag 11-8
Application Configuration Resources 11-8
11.4.1 Overview 11-8
11.4.2 Application Startup Behavior 11-9
11.4.3 Application Shutdown Behavior 11-9
11.4.4 Application Configuration Resource Format 11-10
11.4.5 Configuration Impact on JSF Runtime 11-11
11.4.6 Delegating Implementation Support 11-12
11.4.7 Ordering of Artifacts 11-15

11.4.8 Example Application Configuration Resource 11-20

Contents

XXVi

12.

13.

11.5 Annotations that correspond to and may take the place of entries in the Application Configuration
Resources 11-21

11.5.1 Requirements for scanning of classes for annotations 11-21

Lifecycle Management 12-1
12.1 Lifecycle 12-1

12.2 PhaseEvent 12-2

12.3 PhaseListener 12-2
12.4 LifecycleFactory 12-5

Ajax Integration 13-1
13.1 JavaScript Resource 13-1
13.1.1 JavaScript Resource Loading 13-1
13.1.1.1 The Annotation Approach 13-1
13.1.1.2 The Resource API Approach 13-2
13.1.1.3 The Page D eclaration Language Approach 13-3
13.2 JavaScript Namespacing 13-3
13.3 Ajax Interaction 13-4
13.3.1 Sending an Ajax Request 13-4
13.3.2 Ajax Request Queueing 13-4
13.3.3 Request Callback Function 13-4
13.3.4 Receiving The Ajax Response 13-5
13.3.5 Monitoring Events On The Client 13-5
13.3.5.1 Monitoring Events For An Ajax Request 13-5
13.3.5.2 Monitoring Events For All Ajax Requests 13-5
13.3.5.3 Sending Events 13-5
13.3.6 Handling Errors On the Client 13-6
13.3.6.1 Handling Errors For An Ajax Request 13-6
13.3.6.2 Handling Errors For All Ajax Requests 13-6
13.3.6.3 Signaling Errors 13-6
13.3.7 Handling Errors On The Server 13-7
13.4 Partial View Traversal 13-7
13.4.1 Partial Traversal Strategy 13-8
13.4.2 Partial View Processing 13-8
13.4.3 Partial View Rendering 13-8
13.4.4 Sending The Response to The Client 13-8
13.4.4.1 Writing The Partial Response 13-9

Jxxvii JavaServer Faces Specification June 2009

14.

15.

16.

JavaScript API 14-1

14.1

14.2

14.3
14.4

14.5

14.6

Collecting and Encoding View State 14-1

14.1.1 Use Case 14-1

Initiating an Ajax Request 14-2

14.2.1 Usage 14-2

14.2.2 Keywords 14-3

14.2.3 Default Values 14-3

14.2.4 Request Sending Specifics 14-3

14.2.5 Use Case 14-4

Processing The Ajax Response 14—4

Registering Callback Functions 14-4

14.4.1 Request/Response Event Handling 14-5
14.4.1.1 Use Case 14-5

14.4.2 Error Handling 14-6
14.42.1 Use Case 14-6

Determining An Application’s Project Stage 14-7

14.5.1 Use Case 14-7

Script Chaining 14-7

Appendix A - JSF Metadata A-1

1.1
1.2
1.3
1.4

XML Schema Definition for Application Configuration Resource file A-1
XML Schema Definition For Facelet Taglib A-61
XML Schema Definition for Partial Responses A-71

XML Schema Definition for Composite Components A—77

Appendix B - Change Log B-83

2.1

Changes Between 1.1 and 1.2 B-83
Unified Expression Language (EL) 83

2.1.0.1 Guide to Deprecated Methods Relating to the Unified EL and their Corresponding
Replacements B-83

Guide to Deprecated Methods Relating to State Management and their Corresponding
Replacements 86

JavaServer Faces 1.2 Backwards Compatibility 86

Breakages in Backwards Compatability 86
General changes 87

Preface 90

Section 2.2.1 “Restore View” 90

Contents

Xxviii

Section 2.2.6 “Render Response” 90
Section 2.4.2.1 “Create A New View” 90
Section 2.5.2.4 “Localized Application Messages” 91
Section 3.1.11 “Generic Attributes” 91
Section 3.1.13 “Component Specialization Methods” 91

Add new method, encodeAll(), which is now the preferred method for developers to call to render a
child or facet(). 91

Section 4.1.4 “UlForm” 91

UlData Section 4.1.3.2 “Properties” 91

Ullnput Section 4.1.6 “Ullnput” 91

Ullnput Section 4.1.6.3 “Methods” 91

Section 4.1.19 “UIViewRoot” 91

Section 5.1.2 and 5.1.3 “ValueExpression Syntax” and “ValueExpression Semantics” 91
Section 5.2.1 “MethodExpression Syntax and Semantics” 91

Section 5.4 “Leveraging Java EE 5 Annotations in Managed Beans” 92

Section 5.5.3 “ExpressionFactory” 92

Section 5.6.1.4 “ResourceBundle ELResolver for JSP Pages” 92

Section 7.5.1 “Overview” ViewHandler 92

Section 7.5.2 “Default ViewHandler Implementation” 92

State Saving Section 7.7.1 “Overview” 92

Section 7.7.2 “State Saving Alternatives and Implications” 92

Section 8.4 “ResponseStateManager” 93

Section 9.1 “UlComponent Custom Actions” 93

Section 9.2.8 “Interoperability with JSP Template Text and Other Tag Libraries” 93
Section “Integration with JSP” 93

Section 9.3.1.2 “Faces 1.0 and 1.1 Taglib migration story” 93

Section 9.4 “JSF Core Tag Library” 93

Section 9.4.2 “<f:attribute>" 93

Section 9.4.12 “<f:setPropertyActionListener>" 94

Section 9.4.21 “<fiview>” 94

Section 9.5 “Standard HTML RenderKit Tag Library” 94

Section 11.2.6.2 “FacesServlet” 94

Section 11.3 “Deprecated APIs in the webapp package” 94

Section 11.4.2 “Application Startup Behavior” 94

Chapter A “XML Schema Definition for Application Configuration Resource file 94

[xxix JavaServer Faces Specification < June 2009

Preface

This is the JavaServer Faces 2.0 (JSF 2.0) specification, developed by the JSR-314 expert group under the Java
Community Process (see <http://www.jcp.org> for more information about the JCP).

Changes between 1.2 Final and Early Draft Review 2

This section gives a change-by-change accounting of the modifications to the spec since the draft listed in the title of this
section. Readers interested in a user level overview should consult Section “Compatibility with and Migration from
JavaServer Faces 1.2”.

Section 2.1 “Request Processing Lifecycle Scenarios™

Modified to define and explain resource requests and responses.

Section 2.2 “Standard Request Processing Lifecycle Phases”

Specify how and when the cur r ent Phasel d property of the current FacesCont ext must be updated.

Section 2.2.1 “Restore View”

Modified to indicate that the Post AddToVi ewEvent event must be sent after the view was created. Also specify that
if the VDL is Facelets, the tree must be fully constructed before exiting Restore View.

Change how the “binding” attribute is handled. In the case of a programmatically created view, manually traverse the
tree and send each node the Af t er Rest or eVi ewEvent . In the case of a normally restored tree, the “binding”
attribute is handled by Ul Vi ewRoot . pr ocessRest or eSt at e() , which is already called from

St at eManager . restoreVi ew().

Modify the non-faces-request case to include view parameter processing.

Section 2.2.2 “Apply Request Values™

Specified additional behavior to recognize partial requests and to perform partial processing.

Preface 1

9

Section 2.2.2.1 “Apply Request Values Partial Processing’

Specified behavior for partial processing.

Section 2.2.3 “Process Validations”

Specified additional behavior to recognize partial requests and to perform partial processing.

Section 2.2.3.1 “Partial Validations Partial Processing”

Specified behavior for partial processing.

Section 2.2.4 “Update Model Values”

Specified additional behavior to recognize partial requests and to perform partial processing.

Section 2.2.4.1 “Update Model Values Partial Processing”

Specified behavior for partial processing.

Section 2.2.6 “Render Response”

Generalized to remove JSP specific language.

Added the requirement for (partial requests) to prevent writing to the response at the start of this phase (to prevent
content from being written outside f:view)

Section 2.5.2.4 “Localized Application Messages”

Added message key for Bean Validation.

b]

Section 2.5.4 “Resource Handling’

Add non-normative section traversing this feature.

Section 2.5.5 “View Parameters”

Add non-normative section traversing this feature.

| 2 JavaServer Faces Specification * June 2009

Section 2.5.6 “Bookmarkability”

Add non-normative section traversing this feature.

Section 2.5.7 “JSR 303 Bean Validation”

Add non-normative section traversing this feature.

Section 2.5.8 “Ajax”

Add non-normative section traversing this feature.

Section 2.5.9 “Component Behaviors”

Add non-normative section traversing this feature.

New Section 2.6 “Resource Handling”

This section is the starting point for the specification of the Resource Handler facility, which is also specified in the
JavaDocs and the Standard RenderKit Docs.

New Section 2.6.2 “Rendering Resources”

This section briefly talks about how resources (such as images, stylesheets and scripts) use the resource handling
mechanism.

New Section 2.6.2.1 “Relocatable Resources”

This section outlines the mechanism that script and stylesheet resources use to render themselves in a different location
(with respect to tag or component placement in the view).

New Section 2.6.2.2 “Resource Rendering Using Annotations”

This section describes the use of an annotation to mark that a component requires a resource.

Section 3.1.8 “Component Tree Navigation”

Added descriptions for UIComponent.getCurrentComponent and UIComponent.getCurrentCompositeComponent.

Added descriptions for visitTree().

Preface 3

Section 3.1.10 “Managing Component Behavior”

Described additional method implementations of the BehaviorHolder interface.

Section 3.1.11 “Generic Attributes”

Described additional responsibilities for Map get() method if the component instance is a composite component.

Section 3.1.11.1 “Special Attributes”

Describe UIComponent contants that are used in attribute Map(s).

Section 3.1.13 “Component Specialization Methods”

Mentioned the default behavior of UlComponentBasse encodeChildren if no associated renderer. Mentioned
encodeBegin() must publish PreRenderComponentEvent.

Section 3.1.14 “Lifecycle Management Methods”

Added pointers to pushConponent ToEL() popConponent Fr omEL() in support of “component” implicit object.

Section 3.1.15 “Utility Methods”

Added UIComponent utility method getResourceBundleMap().

Section 3.2.6.1 “Properties”

Mentioned ResourceDependency/ResourceDependencies lookup for ValueHolder setConverter method.

Section 3.2.7.2 “Methods”

Mentioned ResourceDependency/ResourceDependencies lookup for EditableValueHolder addValidator method..

Section 3.2.8 “SystemEventListenerHolder”

Added section describing this new behavioral interface.

Section 3.3.2 “Converter”

Added verbage about Resource annotations attached to Converters.

| 4 JavaServer Faces Specification * June 2009

Section 3.4.1 “Overview”

Updated UML diagram of event package

Moved existing event content to be in new subsection: Section 3.4.2 “Application Events”, and created a new subsection
Section 3.4.3 “System Events”

Section 3.4.2.6 “Event Broadcasting”

Clarification made: throwing an AbortProcessingException tells an implementation that no further broadcast of the
current event occurs. Does not affect future events.

Section 3.4.3.1 “Event Classes”

Added descriptions for PostConstructApplicationEvent and PreDestroyApplicationEvent.

Section 3.4.3.4 “Declarative Listener Registration”

New section for declarative events.

Section 3.4.3.5 “Listener Registration By Annotation”

Added verbiage about ListenerFor and ListenersFor annotations.

Section 3.5.2 “Validator Classes™

Added verbage about Resource annotations attached to Validators.

Section 3.5.2 “Validator Classes”

Add “javax.faces.RegularExpressionValidator” standard validator

Section 3.5.2 “Validator Classes”

Added validaor requirements with respect to dealing with null or empty values.

Section 3.5.3 “Validation Registration”

Added default validator registration requirements.

Preface 5

Section 3.5.5 “Standard Validator Implementations”

Added requirements for BeanValidator and RequiredValidator.

Section 3.5.6 “Bean Validation Integration”

Bean Validation integration.

Section 3.7 “Component Behavior Model”

Section describes adding behavior to the component model.

Section 4.1.19.2 “Properties”

Specify the vi ewiVap property on UIViewRoot.

Section 4.1.19.3 “Methods”

Specify new methods on UlViewRoot for handling resources for the view.

Section 4.1.19.4 “Events”

Added UIViewRoot getPhaseListeners().

Section 4.1.19.5 “Partial Processing”

Specify additional behavior for UIViewRoot methods to faciliate partial processing.

Section 4.2.1.2 “Methods”

Specify iterator() method for DataModel.

Section 3.6 “Composite User Interface Components™

New section specifying composite components.

Section 5.2.1 “MethodExpression Syntax and Semantics”

Modify content relating to managed-bean-scope to include “view” scope.

| 6 JavaServer Faces Specification « June 2009

Section 5.4.1 “Managed Bean Lifecycle Annotations”

Modify @ost Const ruct to state that an exception thrown during the @PostConstruct must cause a log message to be
logged.

Modify content to clarify when @°r eDest r oy must be called in the case of view scoped managed beans.

Section 5.6.1.1 “Faces Implicit Object ELResolver For JSP” and
Section 5.6.2.1 “Implicit Object ELResolver for Facelets and
Programmatic Access”

Specify how the new implicit object ”’r esour ce* must be handled by the Implicit Object ELResolver.

Specify how vi ewScope, conponent , and cc are resolved.

Section 5.6.1.2 “ManagedBean ELResolver”

Modify setValue() to allow for atomic lazy creation. This eliminates the need to do a get() before doing a set().

Section 5.6.2.1 “Implicit Object ELResolver for Facelets and
Programmatic Access”

Add a new implicit object: “resource”. This allows easily encoding resources into markup using EL expressions

non

Corrected behavior of getType with respect to "requestScope"”, "sessionScope", or “applicationScope” - should return
null, not Object.class.

Section 5.6.2.5 “Resource ELResolver”

This section specifies the behavior of the Resource EL Resolver

Section 5.6.2.2 “Composite Component Attributes ELResolver”

New ELResolver that ensures that #{cc.attrs} resolves to a special Map.

Section 5.6.2.9 “ScopedAttribute ELResolver”

Specify that setPropertyResolved(true) is called in all cases.

Section 6.1.2 “Attributes”

Add new section after 6.1.1 documenting the new Map returned from FacesCont ext . get Attri butes().

Preface 7

9

Section 6.1.8 “ResponseStream and ResponseWriter’

Add FacesContext enableResponseWriting method.

Section 6.1.10 “Partial Processing Methods”

Specify the FacesContext contants and methods that facilitate partial request processing.

Section 6.1.11 “Partial View Context”

Specify this class is used to facilitate partial view processing and partial view rendering.

Section 6.1.12 “Access To The Current FacesContext Instance”

Specify how this method must behave during application startup time.Corrected access keyword for
FacesContext.setCurrentInstance() to be pr ot ect ed instead of publ i c.

Section 6.1.13 “CurrentPhaseld”

New property to access the current phase.

Section 6.2 “ExceptionHandler”

New property to access the Except i onHandl| er for this request.

Section 6.7 “ExceptionHandlerFactory”

New factory for Except i onHandl er instances.

Section 6.8 “ExternalContextFactory”

New factory for Ext er nal Cont ext .

Section 7.1.8 “ProjectStage Property”

This section documents the new ProjectStage property. This is similar in use to the RAILS ENV environment variable
from the Ruby on Rails framework.

Section 7.1.13 “System Event Methods”

New section describing system events.

| 8 JavaServer Faces Specification « June 2009

Section 7.4.2 “Default NavigationHandler Algorithm”

Specify how to handle implicit navigation.
Specify how to handle conditional navigation
Require that cont ext . get Fl ash() . set Redi rect (true) is called if the navigation is a redirect.

Specify that an informative message must be rendered in the page if there is no outcome match and Pr 0j ect St age is
not Producti on.

Special handling for view parameters and redirect.

Section 7.5.1 “Overview”

In cr eat eVi ew(), if the VDL is Facelets, make sure the view is fully populated before returning.

Section 7.5.2 “Default ViewHandler Implementation™

Move the viewld derivation algorithm to be inside of the new Vi ewHandl er. deri veVi ew d() method and specify
it to deal with the new DEFAULT SUFFIX definition.

Modify getActionURL() to remove the use of DEFAULT SUFFIX and instead take a simpler implementation.

Refactored VDL specific logic into new Vi ewDecl ar ati onLanguage class.

Section 7.6 “ViewDeclarationLanguage”

New section which coveres how Facelets and JSP are handled via the ViewDeclarationLanguage class.

Section 8.1 “RenderKit”

New methods on Render Ki t : get Conponent Fani | i es() and get Render er Types() .

Section &8.2 “Renderer”

Mentioned the ListenerFor annotation.

b]

Section 8.3 “ClientBehaviorRenderer’

Renderer for component Behavior.

Section 9.4.3 “<f:convertDateTime>"

Extends ConverterELTag, not ConverterTag.

Preface 9

Section 9.4.4 “<f:convertNumber>"

Extends ConverterELTag, not ConverterTag

Section 9.4.14 “<f:validateDoubleRange>"

Extends ValidatorELTag, not ValidatorTag

Section 9.4.16 “<f:validateRegex>"

New standard validator

Section 9.4.17 “<f:validateLongRange>"

Extends ValidatorELTag, not ValidatorTag

Section 9.4.21 “<f:view>"

Extends UIComponentELTag, not UIComponentBodyTag

Section “Facelets and its use in Web Applications”

New chapter insterted after Chapter 9, titled, “Integration with Facelets”. This implies increasing the remaining chapter
numbers by one.

Section 10.4.1.1 “<f:ajax>”

Declarative Ajax tag.

Section “Override default Ajax action. “buttonl” is associated with the
Ajax “execute="cancel’” action:”

Bean Validation tag.

Section 10.4.1.5 “<f:validateRequired>”

Bean Validation tag.

| 10 JavaServer Faces Specification « June 2009

Section 11.1.3 “Application Configuration Parameters”

New j avax. f aces. PRQIECT _STACE ServletContext init param.
New j avax. f aces. | NTERPRET_EMPTY_STRI NG_SUBM TTED VALUES _AS_NULL ServletContext init param.
New j avax. f aces. DI SABLE _FACES VDL_VI EWHANDLER ServletContext init param.

Modify j avax. f aces. DEFAULT_SUFFI X init param, add j avax. f aces. FACELETS_DEFAULT_SUFFI X,
j avax. f aces. FACELETS_VI EW MAPPI NGS init params.

New j avax. f aces. VALI DATE_EMPTY_FI ELDS ServletContext init param.
New j avax. f aces. PARTI AL_STATE_SAVI NG ServletContext init param
New j avax. faces. FULL_STATE_SAVI NG VI EW | DS servlet context init param.

Explicitly ignore “/ WEB- | NF/ f aces- confi g. xm ”in j avax. f aces. CONFI G_FI LES, if present.

Section 11.4.2 “Application Startup Behavior”

Change rules to support ordering of configuration resources.

Section 11.4.5 “Configuration Impact on JSF Runtime”

Specify requirements for handling r esour ce- handl er elements within the application configuration resources.

Specify requirements for handling f aces- 1 i fecycl e-1i st ener elements within the application configuration
resources.

Declare except i on- handl er-factory.
Declare di scovery-handl er-factory.

Declare vi ew decl ar ati on-| anguage-f act ory.

Section 11.4.6 “Delegating Implementation Support”

List decoratable artifacts.

Section 11.4.7 “Ordering of Artifacts”

Define the rules for ordering of configuratino resources.

Section 11.5 “Annotations that correspond to and may take the place of
entries in the Application Configuration Resources”

New section detailing new annotations.

Preface 11

Section 12.2 “PhaseEvent”

Statement should read: encapsulated by FacesContext...

Chapter 13 “Ajax Integration

New chapter describing how Ajax will integrate with JavaServer Faces.

Section 13.1 “JavaScript Resource”

This section describes the standard Ajax JavaScript resource that will be used in JavaServer Faces.

Section 13.1.1 “JavaScript Resource Loading”

This section describes how the Ajax resource will leverage the resource loading feature.

Section 13.1.1.1 “The Annotation Approach”

This section mentions the use of the resource annotation to specify that a component or renderer requires the Ajax
ressource.

Section 13.1.1.2 “The Resource API Approach”

Component authors can also specify that a custom component or renderer requires the Ajax resource by using the
resource APIs.

Section 13.1.1.3 “The Page D eclaration Language Approach”

Page authors can make the Ajax resource available through the standard resource tags.

Section 13.2 “JavaScript Namespacing”

This section discusses the JavaScript namespacing requirements for the Ajax resource to avoid collisions with other
JavaScript libraries.

Section 13.3 “Ajax Interaction”

This section describes the JavaScript functions that will be available to allow clients to perform Ajax interactions with
JavaServer Faces.

| 12 JavaServer Faces Specification « June 2009

Section 13.3.1 “Sending an Ajax Request”

This section describes the process of sending an Ajax request to the server.

Section 13.3.2 “Ajax Request Queueing”

Higher level requirements about queueing Ajax requests before they are sent.

Section 13.3.3 “Request Callback Function”

Describes the functionality when a response comes back from the server.

Section 13.3.4 “Receiving The Ajax Response”

Describes the requirements of javax.faces.Ajax.ajaxResponse - the function that gets called from the Ajax request
callback function.

Section 13.3.5 “Monitoring Events On The Client”

Describes the JavaScript functions used to register event and error callback functions that will be notified when events
and errors occur.

Section 13.3.5.1 “Monitoring Events For An Ajax Request”

Details about specifying the “onevent” attribute.

Section 13.3.5.2 “Monitoring Events For All Ajax Requests”

Specifics about the jsf.ajax.addOnEvent function.

Section 13.3.5.3 “Sending Events”

Details about sending client side events.

Section 13.3.6 “Handling Errors On the Client”

Specifics about the JavaScript functions to use for handling errors on the client.

Section 13.3.6.1 “Handling Errors For An Ajax Request”

Details about specifying “onerror” attribute.

Preface 13

Section 13.3.6.2 “Handling Errors For All Ajax Requests”

Details about jsf.ajax.addOnError function.

Section 13.3.6.3 “Signaling Errors”

Specifics about signaling client side errors.

Section 13.3.7 “Handling Errors On The Server”

Specifics about exception handling on the server for Ajax requests.

Section 13.4 “Partial View Traversal”

This section provides a summary of how Faces can process one or more components in a view - know as partial
processing.

Section 13.4.1 “Partial Traversal Strategy”

This section provides a summary of how frameworks can plug in strategies for performing partial view processing and
partial view rendering.

Section 13.4.2 “Partial View Processing”

This section describes how one or more components can be processed in the “execute” portion of the request processing
lifecycle.

Section 13.4.3 “Partial View Rendering”

This section describes how one or more components can be processed in the “render” portion of the request processing
lifecycle.

Section 13.4.4 “Sending The Response to The Client”

Describes the server side responsibilities for preparing and sending the response markup back to the client.

Section 13.4.4.1 “Writing The Partial Response”

Describes the PartialResponseWriter requirements.

| 14 JavaServer Faces Specification « June 2009

Chapter 14 “JavaScript API

New Chapter - JavaScript API for JSF 2.0

Section 14.1 “Collecting and Encoding View State”

Describes the JavaScript function that can be used to return encoded state for a given form.

Section 14.1.1 “Use Case”

Simple example of using the jsf.getViewState function.

Section 14.2 “Initiating an Ajax Request”

Describes the JavaScript function used to send Ajax requests.

Section 14.2.1 “Usage”

jsf.ajax.request function syntax and arguments.

Section 14.2.3 “Default Values”

Default values for the “execute” and “render” arguments.

Section 14.2.4 “Request Sending Specifics”

Implementation requirements for the jsf.ajax.reqeust function.

Section 14.2.5 “Use Case”

Simple example of the request function.

Section 14.5 “Determining An Application’s Project Stage”

This section summarizes the implementation requirements for the jsf.ajax.response function.

Section 14.4 “Registering Callback Functions”

This section describes the functions that can be used to register callback functions that will be notified when events and

€ITors occur.

Section 14.4.1 “Request/Response Event Handling”

Describes the specifics of using the JavaScript API to register event handling callback functions.

Section 14.4.1.1 “Use Case”

Simple example of jsf.ajax.addOnEvent function.

Section 14.4.2 “Error Handling”

Describes the specifics of using the JavaScript API to register error handling callback functions.

Section 14.4.2.1 “Use Case”

Simple example of jsf.ajax.addOnError function.

Section 14.5 “Determining An Application’s Project Stage”

Describes the function used to determine an application’s project stage.

Section 14.5.1 “Use Case”

Simple example of jsf.getProjectStage function.

Section 14.6 “Script Chaining”

Describes the jsf.util.chain function that can be used to chain function calls.

Section 1.1 “XML Schema Definition for Application Configuration
Resource file”

Add the r esour ce- handl er element.

Add the faces-1ifecycl e-1istener element and its children.

Section 1.3 “XML Schema Definition for Partial Responses”

New section - the layout for the Ajax response.

| 16 JavaServer Faces Specification « June 2009

Standard HTML RenderKit specification

component-family: javax.faces.Graphic renderer-type: javax.faces.Image

Spec for what to do if “name”, “library” or “target” attributes are present

component-family: javax.faces.Output renderer-type: javax.faces.Body

This is a new Renderer in the standard-html-renderkit

component-family: javax.faces.Output renderer-type: javax.faces.Head

This is a new Renderer in the standard-html-renderkit

component-family: javax.faces.Output renderer-type: javax.faces.resource.Script

This is a new Renderer in the standard-html-renderkit

component-family: javax.faces.Output renderer-type: javax.faces.resource.Stylesheet

This is a new Renderer in the standard-html-renderkit

General Changes

The numbers in the text below refer to issue numbers in the issue tracker found at <https://javaserverfaces-spec-
public.dev.java.net/servlets/Projectlssues>.

100 - New methods on Render Ki t : get Conrponent Famni | i es() and get Render er Types().
170 - Allow commandButton to have f:param children.

175 - Non-normatively clarify that the value of the "src" attribute will have the context-root prepended to it if the
value starts with "/".

199 - Spec updates to clarify commandLink.
201 - Clean up convertNumber locale attribute to match with convertDateTime locale attribute.

226 - Require that SelectOneListBox and all similar renderers set "" if no request parameter can be found for the
component instance.

228 - add selectedClass and unselectedClass to selectManyCheckbox
232 - Make javax.faces.model.DataModel implement Iterable.

259 - For selectOneRadio and selectManyCheckbox, normatively require the "style" and "border" elements to end up
on the respective attributes on the rendered "table".

310 - Add context-param for setting the default timezone of DateTimeConverter instances

311 - Make the documentation in the spec prose document and the javadocs for the “first” property of UlData be
consistent. In both cases, the value returned is relative to “zero”, not “one”.

317 - Make it so you if you try to do setValue on a managedBean that is not yet instantiated, it gets automatically
instantiated first.

331 - add getPhaseListeners() to UIViewRoot.

361 - Section 3.1.5, fix missed ValueBinding to ValueExpression change.

Preface 17

Compatibility with and Migration from JavaServer Faces
1.2

This section provides a user-level survey of topic relating to migrating a JSF application between the version in the title
of the section and the version of the spec in this document. This is not an exhaustive HOWTO.

Related Technologies

Other Java™ Platform Specifications

JSF is based on the following Java API specifications:

= JavaServer Pages™ Specification, version 2.1 (JSP™) <http://java.sun.com/products/jsp/>

= Java™ Servlet Specification, version 2.5 (Servlet) <http://java.sun.com/products/serviet/>

= Java™?2 Platform, Standard Edition, version 5.0 <http://java.sun.com/j2se/>

= Java™?2 Platform, Enterprise Edition, version 5.0 <http://java.sun.com/j2ee/>

= JavaBeans™ Specification, version 1.0.1 <http://java.sun.com/products/javabeans/docs/spec.html>

= JavaServer Pages™ Standard Tag Library, version 1.2 (JSTL) <http://java.sun.com/products/jsp/jstl/>

Therefore, a JSF container must support all of the above specifications. This requirement allows faces applications to be
portable across a variety of JSF implementations.

In addition, JSF is designed to work synergistically with other web-related Java APIs, including:
= Portlet Specification, 1.0 JSR-168 <http://www.jcp.org/jsr/detail/168.jsp>

= Portlet Specification, 2.0 JSR-286 <http://www.jcp.org/jst/detail/286.jsp>

= JSF Portlet Bridge Specification, JSR-301 <http://www.jcp.org/jsr/detail/301.jsp>

Related Documents and Specifications

The following documents and specifications of the World Wide Web Consortium will be of interest to JSF implementors,
as well as developers of applications and components based on JavaServer Faces.

= Hypertext Markup Language (HTML), version 4.01 <http://www.w3.org/TR/html4/>
= Extensible HyperText Markup Language (XHTML), version 1.0 <http://www.w3.org/TR/xhtml1>
= Extensible Markup Language (XML), version 1.0 (Second Edition) <http://www.w3.org/TR/REC-xml>

The class and method Javadoc documentation for the classes and interfaces in j avax. f aces (and its subpackages) are
incorporated by reference as requirements of this Specification.

The JSP tag library for the HTML_ BASIC standard RenderKit is specified in the TLDDocs and incorporated by
reference in this Specification.

| 18 JavaServer Faces Specification « June 2009

Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in

= Key words for use in RFCs to Indicate Requirement Levels (RFC 2119) <http://www.rfc-editor.org/rfc/rfc2119.txt>

Providing Feedback

We welcome any and all feedback about this specification. Please email your comments to <jsr-314-
comments@jcp.org>.

Please note that, due to the volume of feedback that we receive, you will not normally receive a reply from an engineer.
However, each and every comment is read, evaluated, and archived by the specification team.

Acknowledgements

The JavaServer Faces Specification (version 2.0) is the result of the diligent efforts of the JSR-314 Expert Group,
working under the auspices of the Java Community Process.

Preface 19

20 JavaServer Faces Specification « June 2009

Overview

JavaServer Faces (JSF) is a user interface (Ul) framework for Java web applications. It is designed to significantly ease
the burden of writing and maintaining applications that run on a Java application server and render their Uls back to a
target client. JSF provides ease-of-use in the following ways:

= Makes it easy to construct a UI from a set of reusable Ul components

= Simplifies migration of application data to and from the Ul

= Helps manage Ul state across server requests

= Provides a simple model for wiring client-generated events to server-side application code
= Allows custom Ul components to be easily built and re-used

Most importantly, JSF establishes standards which are designed to be leveraged by tools to provide a developer
experience which is accessible to a wide variety of developer types, ranging from corporate developers to systems
programmers. A “corporate developer” is characterized as an individual who is proficient in writing procedural code and
business logic, but is not necessarily skilled in object-oriented programming. A “systems programmer” understands
object-oriented fundamentals, including abstraction and designing for re-use. A corporate developer typically relies on
tools for development, while a system programmer may define his or her tool as a text editor for writing code.

Therefore, JSF is designed to be tooled, but also exposes the framework and programming model as APIs so that it can
be used outside of tools, as is sometimes required by systems programmers.

1.1

Solving Practical Problems of the Web

JSF’s core architecture is designed to be independent of specific protocols and markup. However it is also aimed directly
at solving many of the common problems encountered when writing applications for HTML clients that communicate via
HTTP to a Java application server that supports servlets and JavaServer Pages (JSP) based applications. These
applications are typically form-based, and are comprised of one or more HTML pages with which the user interacts to
complete a task or set of tasks. JSF tackles the following challenges associated with these applications:

= Managing Ul component state across requests

= Supporting encapsulation of the differences in markup across different browsers and clients

= Supporting form processing (multi-page, more than one per page, and so on)

= Providing a strongly typed event model that allows the application to write server-side handlers (independent of
HTTP) for client generated events

= Validating request data and providing appropriate error reporting

= Enabling type conversion when migrating markup values (Strings) to and from application data objects (which are
often not Strings)

» Handling error and exceptions, and reporting errors in human-readable form back to the application user

= Handling page-to-page navigation in response to Ul events and model interactions.

Chapter 1 Overview 1-21

1.2

1.2.1

1.2.2

Specification Audience

The JavaServer Faces Specification, and the technology that it defines, is addressed to several audiences that will use
this information in different ways. The following sections describe these audiences, the roles that they play with respect
to JSF, and how they will use the information contained in this document. As is the case with many technologies, the
same person may play more than one of these roles in a particular development scenario; however, it is still useful to
understand the individual viewpoints separately.

Page Authors

A page author is primarily responsible for creating the user interface of a web application. He or she must be familiar
with the markup and scripting languages (such as HTML and JavaScript) that are understood by the target client devices,
as well as the rendering technology (such as JavaServer Pages) used to create dynamic content. Page authors are often
focused on graphical design and human factors engineering, and are generally not familiar with programming languages
such as Java or Visual Basic (although many page authors will have a basic understanding of client side scripting
languages such as JavaScript).

Page authors will generally assemble the content of the pages being created from libraries of prebuilt user interface
components that are provided by component writers, tool providers, and JSF implementors. The components themselves
will be represented as configurable objects that utilize the dynamic markup capabilities of the underlying rendering
technology. When JavaServer Pages are in use, for example, components will be represented as JSP custom actions,
which will support configuring the attributes of those components as custom action attributes in the JSP page. In
addition, the pages produced by a page author will be used by the JSF framework to create component tree hierarchies,
called “views”, that represent the components on those pages.

Page authors will generally utilize development tools, such as HTML editors, that allow them to deal directly with the
visual representation of the page being created. However, it is still feasible for a page author that is familiar with the
underlying rendering technology to construct pages “by hand” using a text editor.

Component Writers

Component writers are responsible for creating libraries of reusable user interface objects. Such components support the
following functionality:

= Convert the internal representation of the component’s properties and attributes into the appropriate markup language
for pages being rendered (encoding).

= Convert the properties of an incoming request—parameters, headers, and cookies—into the corresponding properties
and attributes of the component (decoding)

= Utilize request-time events to initiate visual changes in one or more components, followed by redisplay of the current
page.

= Support validation checks on the syntax and semantics of the representation of this component on an incoming
request, as well as conversion into the internal form that is appropriate for this component.

= Saving and restoring component state across requests

As will be discussed in Chapter 8 “Rendering Model,” the encoding and decoding functionality may optionally be
delegated to one or more Render Kits, which are responsible for customizing these operations to the precise requirements
of the client that is initiating a particular request (for example, adapting to the differences between JavaScript handling
in different browsers, or variations in the WML markup supported by different wireless clients).

The component writer role is sometimes separate from other JSF roles, but is often combined. For example, reusable
components, component libraries, and render kits might be created by:

= A page author creating a custom “widget” for use on a particular page

[1-22 JavaServer Faces Specification * June 2009

1.2.3

1.2.4

= An application developer providing components that correspond to specific data objects in the application’s business
domain

= A specialized team within a larger development group responsible for creating standardized components for reuse
across applications

= Third party library and framework providers creating component libraries that are portable across JSF
implementations

= Tool providers whose tools can leverage the specific capabilities of those libraries in development of JSF-based
applications

= JSF implementors who provide implementation-specific component libraries as part of their JSF product suite

Within JSF, user interface components are represented as Java classes that follow the design patterns outlined in the
JavaBeans Specification. Therefore, new and existing tools that facilitate JavaBean development can be leveraged to
create new JSF components. In addition, the fundamental component APIs are simple enough for developers with basic
Java programming skills to program by hand.

Application Developers

Application Developers are responsible for providing the server-side functionality of a web application that is not
directly related to the user interface. This encompasses the following general areas of responsibility:

= Define mechanisms for persistent storage of the information required by JSF-based web applications (such as creating
schemas in a relational database management system)

= Create a Java object representation of the persistent information, such as Entity Enterprise JavaBeans (Entity EJBs),
and call the corresponding beans as necessary to perform persistence of the application’s data.

= Encapsulate the application’s functionality, or business logic, in Java objects that are reusable in web and non-web
applications, such as Session EJBs.

= Expose the data representation and functional logic objects for use via JSF, as would be done for any servlet- or JSP-
based application.

Only the latter responsibility is directly related to JavaServer Faces APIs. In particular, the following steps are required
to fulfill this responsibility:

= Expose the underlying data required by the user interface layer as objects that are accessible from the web tier (such
as via request or session attributes in the Servlet API), via value reference expressions, as described in Chapter 4
“Standard User Interface Components.”

= Provide application-level event handlers for the events that are enqueued by JSF components during the request
processing lifecycle, as described in Section 2.2.5 “Invoke Application”.

Application modules interact with JSF through standard APIs, and can therefore be created using new and existing tools
that facilitate general Java development. In addition, application modules can be written (either by hand, or by being
generated) in conformance to an application framework created by a tool provider.

Tool Providers

Tool providers, as their name implies, are responsible for creating tools that assist in the development of JSF-based
applications, rather than creating such applications directly. JSF APIs support the creation of a rich variety of
development tools, which can create applications that are portable across multiple JSF implementations. Examples of
possible tools include:

= GUI-oriented page development tools that assist page authors in creating the user interface for a web application

= IDEs that facilitate the creation of components (either for a particular page, or for a reusable component library)

= Page generators that work from a high level description of the desired user interface to create the corresponding page
and component objects

= IDESs that support the development of general web applications, adapted to provide specialized support (such as
configuration management) for JSF

= Web application frameworks (such as MVC-based and workflow management systems) that facilitate the use of JSF
components for user interface design, in conjunction with higher level navigation management and other services

Chapter 1 Overview 1-23

1.2.5

1.3

1.3.1

1.3.2

1.3.3

= Application generators that convert high level descriptions of an entire application into the set of pages, Ul
components, and application modules needed to provide the required application functionality

Tool providers will generally leverage the JSF APIs for introspection of the features of component libraries and render
kit frameworks, as well as the application portability implied by the use of standard APIs in the code generated for an
application.

JSF Implementors

Finally, JSF implementors will provide runtime environments that implement all of the requirements described in this
specification. Typically, a JSF implementor will be the provider of a Java 2 Platform, Enterprise Edition (J2EE)
application server, although it is also possible to provide a JSF implementation that is portable across J2EE servers.

Advanced features of the JSF APIs allow JSF implementors, as well as application developers, to customize and extend
the basic functionality of JSF in a portable way. These features provide a rich environment for server vendors to compete
on features and quality of service aspects of their implementations, while maximizing the portability of JSF-based
applications across different JSF implementations.

Introduction to JSF APIs

This section briefly describes major functional subdivisions of the APIs defined by JavaServer Faces. Each subdivision
is described in its own chapter, later in this specification.

package | avax. f aces

This package contains top level classes for the JavaServer(tm) Faces API. The most important class in the package is
Fact or yFi nder, which is the mechanism by which users can override many of the key pieces of the implementation
with their own.

Please see Section 11.2.6.1 “FactoryFinder”.

package | avax. faces. appli cati on
This package contains APIs that are used to link an application’s business logic objects to JavaServer Faces, as well as

convenient pluggable mechanisms to manage the execution of an application that is based on JavaServer Faces. The main
class in this package is Appl i cati on.

Please see Section 7.1 “Application”.

package | avax. f aces. conponent

This package contains fundamental APIs for user interface components.

Please see Chapter 3 “User Interface Component Model.

[1-24 JavaServer Faces Specification * June 2009

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

package | avax. f aces. conponent . ht n

This package contains concrete base classes for each valid combination of component + renderer.

package | avax. f aces. cont ext

This package contains classes and interfaces defining per-request state information. The main class in this package is
FacesCont ext , which is the access point for all per-request information, as well as the gateway to several other helper
classes.

Please see Section 6.1 “FacesContext”.

package j avax. f aces. convert

This package contains classes and interfaces defining converters. The main class in this package is Converter.

Please see Section 3.3 “Conversion Model”.

package | avax. f aces. el

As of version 1.2 of this specification, all classes and interfaces in this package have been deprecated in favor of the
Unified Expression Language (EL) from JSP 2.1.

Please see Chapter 5 “Expression Language and Managed Bean Facility.

package j avax. faces.|ifecycle

This package contains classes and interfaces defining lifecycle management for the JavaServer Faces implementation.
The main class in this package is Li f ecycl e. Li f ecycl e is the gateway to executing the request processing
lifecycle.

Please see Chapter 2 “Request Processing Lifecycle.

package | avax. f aces. event

This package contains interfaces describing events and event listeners, and concrete event implementation classes. All
component-level events extend from FacesEvent and all component-level listeners extend from FacesLi st ener.

Please see Section 3.4 “Event and Listener Model .

package | avax. f aces. render

This package contains classes and interfaces defining the rendering model. The main class in this package is
Render Ki t . Render Ki t maintains references to a collection of Render er instances which provide rendering
capability for a specific client device type.

Please see Chapter 8 “Rendering Model.

Chapter 1 Overview 1-25

1.3.11 package | avax. f aces. val i dat or

Interface defining the validator model, and concrete validator implementation classes.

Please see Section 3.5 “Validation Model”

1.3.12 package j avax. f aces. webapp

Classes required for integration of JavaServer Faces into web applications, including a standard servlet, base classes for
JSP custom component tags, and concrete tag implementations for core tags.

Please see Chapter 11 “Using JSF in Web Applications.

[1-26 JavaServer Faces Specification * June 2009

Request Processing Lifecycle

Web user interfaces generally follow a pattern where the user-agent sends one or more requests to the server with the end
goal of displaying a user-interface. In the case of Web browsers, an initial HTTP GET or POST request is made to the
server, which responds with a document which the browser interprets and automatically makes subsequent requests on
the user’s behalf. The responses to each of these subsequent requests are usually images, JavaScript files, CSS Style
Sheets, and other artifacts that fit “into” the original document. If the JSF lifecycle is involved in rendering the initial
response, the entire process of initial request, the response to that request, and any subsequent requests made
automatically by the user-agent, and their responses, is called a Faces View Request/Response for discussion. The
following graphic illustrates a Faces View Request/Response.

Faces Run-Time Other Server
Endpoint
| |

Faces Request

—

GET index jst Render Response

Faces Response ‘

-
1T

Full HTML Response

Faces Resource
Request

— GET image.png Handle Resource Response |

-

|
E ‘ Faces Resource Response

Bytes of image.png

|
1

‘ Nen-Faces Request ‘

- Faces View Request/Response

F— GET image2.gif

‘ Non-Faces Response ‘

L Bytes of image2.gif E E
Y

Each Faces View Request/Response goes through a well-defined request processing lifecycle made up of phases. There
are three different scenarios that must be considered, each with its own combination of phases and activities:

= Non-Faces Request generates Faces Response
= Faces Request generates Faces Response
= Faces Request generates Non-Faces Response

Where the terms being used are defined as follows:
= Faces Response—A response that was created by the execution of the Render Response phase of the request

processing lifecycle.

= Non-Faces Response—A response that was not created by the execution of the render response phase of the request
processing lifecycle. Examples would be a servlet-generated or JSP-rendered response that does not incorporate JSF
components, a response that sets an HTTP status code other than the usual 200 (such as a redirect), or a response

Chapter 2 Request Processing Lifecycle 2-1

whose HTTP body consists entirely of the bytes of an in page resource, such as a JavaScript file, a CSS file, an image,
or an applet. This last scenario is considered a special case of a Non-Faces Response and will be referred to as a
Faces Resource Response for the remainder of this specification.

» Faces Request—A request that was sent from a previously generated Faces response. Examples would be a hyperlink
or form submit from a rendered user interface component, where the request URI was crafted (by the component or
renderer that created it) to identify the view to use for processing the request. Another example is a request for a
resource that the user-agent was instructed to fetch an artifact such as an image, a JavaScript file, a CSS stylesheet, or
an applet. This last scenario is considered a special case of a Faces Request and will be referred to as a Faces
Resource Request for the remainder of this specification.

= Non-Faces Request—A request that was sent to an application component (e.g. a servlet or JSP page), rather than
directed to a Faces view.

In addition, of course, your web application may receive non-Faces requests that generate non-Faces responses. Because
such requests do not involve JavaServer Faces at all, their processing is outside the scope of this specification, and will
not be considered further.

READER NOTE: The dynamic behavior descriptions in this Chapter make forward references to the sections that
describe the individual classes and interfaces. You will probably find it useful to follow the reference and skim the
definition of each new class or interface as you encounter them, then come back and finish the behavior description.
Later, you can study the characteristics of each JSF API in the subsequent chapters.

2.1

2.1.1

2.1.2

Request Processing Lifecycle Scenarios

Each of the scenarios described above has a lifecycle that is composed of a particular set of phases, executed in a
particular order. The scenarios are described individually in the following subsections.

Non-Faces Request Generates Faces Response

An application that is processing a non-Faces request may use JSF to render a Faces response to that request. In order to
accomplish this, the application must perform the common activities that are described in the following sections:

= Acquire Faces object references, as described in Section 2.4.1 “Acquire Faces Object References”, below.
= Create a new view, as described in Section 2.4.2 “Create And Configure A New View”, below.
= Store the view into the FacesCont ext by calling the set Vi ewRoot () method on the FacesCont ext .

Faces Request Generates Faces Response

The most common lifecycle will be the case where a previous Faces response includes user interface controls that will
submit a subsequent request to this web application, utilizing a request URI that is mapped to the JSF implementation’s
controller, as described in Section 11.1.2 “Servlet Mapping”. Because such a request will be initially handled by the JSF

[2-2 JavaServer Faces Specification « June 2009

implementation, the application need not take any special steps—its event listeners, validators, and application actions
will be invoked at appropriate times as the standard request processing lifecycle, described in the following diagrams, is

invoked.
T start
Handle Resource

. [Yes] TR Serve Up Resource
isResourceRequest Request locate resource Bytes
[No]

Execute and Render

Lifecycle

The “Handle Resource Request” box, and its subsequent boxes, are explained in Section 2.6 “Resource Handling”. The
following diagram explains the “Execute and Render Lifecycle” box.

x

Conwersion Errors f : :
Fender Responze ¥ Yalidation ! Conwersion !
T " Errors fRender Responseé

! Response Responze '

Complete Camplete !

. Execute i—-----E-------P i"'"El'"""“ !

| i ; i

i . ! !

[Faces :

i Request Restare Apply Regquest Process Process Process !

| Wiew Yalues "1 Ewvents Walidations Events :

i |

i 1

: i i l

' ' i

| Render Response ; H I
I ! :

_____________ TTTTTTTS Response Response i !

; : Complete Complete ! !

CoTTETT T T TT [[FESSCEEEEREEREEE SRR, b

¥ . t | :

Faces b : I

Response Render i 1| Process Invoke Process 1 : ,

| jclate Moclel ! [

4 | FResponze [V Everts spplication [Evertz [*7] Values [+ : !

H 1

T | !

1

]

1

1

1

1

1

1

1

1

!

_L__!________--_

)
o
3
o
1]
=
__...!___...___

The behavior of the individual phases of the request processing lifecycle are described in individual subsections of
Section 2.2 “Standard Request Processing Lifecycle Phases”. Note that, at the conclusion of several phases of the request
processing lifecycle, common event processing logic (as described in Section 2.3 “Common Event Processing”) is
performed to broadcast any FacesEvent s generated by components in the component tree to interested event listeners.

2.1.3 Faces Request Generates Non-Faces Response

Normally, a JSF-based application will utilize the Render Response phase of the request processing lifecycle to actually
create the response that is sent back to the client. In some circumstances, however, this behavior might not be desirable.
For example:

= A Faces Request needs to be redirected to a different web application resource (via a call to
Ht t pSer vl et Response. sendRedi r ect).

= A Faces Request causes the generation of a response using some other technology (such as a servlet, or a JSP page
not containing JSF components).

= A Faces Request causes the generation of a response simply by serving up the bytes of a resource, such as an image,
a JavaScript file, a CSS file, or an applet

Chapter 2 Request Processing Lifecycle 2-3

In any of these scenarios, the application will have used the standard mechanisms of the servlet or portlet API to create
the response headers and content. It is then necessary to tell the JSF implementation that the response has already been
created, so that the Render Response phase of the request processing lifecycle should be skipped. This is accomplished
by calling the r esponseConpl et e() method on the FacesCont ext instance for the current request, prior to
returning from event handlers or application actions.

2.2

2.2.1

Standard Request Processing Lifecycle Phases

The standard phases of the request processing lifecycle are described in the following subsections.

[P1-start-currentPhaseld]The default request lifecycle processing implementation must ensure that the
cur rent Phasel d property of the FacesCont ext instance for this request is set with the proper Phasel d constant
for the current phase as early as possible at the beginning of each phase.[P1-end]

Restore View

[P1-start-restoreView]The JSF implementation must perform the following tasks during the Restore View phase of the
request processing lifecycle:

= CallinitView() onthe Vi ewHandl er. This will set the character encoding properly for this request.
= Examine the FacesCont ext instance for the current request. If it already contains a Ul Vi ewRoot :

« Set the | ocal e on this Ul Vi ewRoot to the value returned by the get Request Local e() method on the
Ext er nal Cont ext for this request.

« CalldoTreeTraversal () onthe Ul Vi ewRoot , passing a Cont ext Cal | back implementation that calls the
processEvent () method of the component. The argument event must be an instance of
Post Rest or eSt at eEvent whose conponent property is the current component in the traversal.

» Take no further action during this phase, and return. The presence of a UIViewRoot already installed in the
FacesContext before the Restore View Phase implementation indicates that the phase should assume the view has
already been restored by other means.

= Derive the vi eW d according to the following algorithm, or one semantically equivalent to it.

« Look in the request map for a value under the key j avax. servl et . i ncl ude. pat h_i nf o. If found, let it be
the vi ew d.

« Call get Request Pat hl nf o() on the current Ext er nal Cont ext . If this value is non-null, let this be the
vi ewl d.

»« Look in the request map for a value under the key j avax. servl et. i ncl ude. servl et _pat h. If found, let
it be the vi ew d.

= If none of these steps yields a non-nul | viewld, throw a FacesExcept i on with an appropriate localized
message.

= Determine if this request is a postback or initial request by executing the following algorithm. Find the render-kit-id
for the current request by calling cal cul at eRender Ki t 1 d() on the Appl i cati on’s Vi ewHandl er. Get that
Render Ki t ’s ResponseSt at eManager and call its i SPost back() method, passing the current
FacesCont ext . If the current request is an attempt by the servlet container to display a servlet error page, do not
interpret the request as a postback, even if it is indeed a postback.

= If the request is a postback, call set Processi ngEvent s(f al se) on the current FacesCont ext . Then call
Vi ewHandl er. rest or eVi ew(), passing the FacesCont ext instance for the current request and the view
identifier, and returning a Ul Vi ewRoot for the restored view. If the return from Vi ewHandl er . r est or eVi ew()
is null, throw a Vi ewkExpi r edExcept i on with an appropriate error message.

[2-4 JavaServer Faces Specification « June 2009

2.2.2

javax. faces. application. Vi enExpi redExcepti on is a FacesExcepti on that must be thrown to
signal to the application that the expected view was not returned for the view identifier. An application may choose to
perform some action based on this exception.

Store the restored Ul Vi ewRoot in the FacesCont ext .
Call set Processi ngEvent s(true) on the current FacesCont ext .

= If the request is not a postback, try to obtain the Vi ewDecl ar at i onLanguage from the Vi ewHandl er, for the
current Vi ew d. If no such instance can be obtained, call f acesCont ext . r ender Response() . Otherwise, call
get Vi emvet adat a() on the Vi ewDecl ar ati onLanguage instance. If the result is non-nul | , call
creat eVi ewiet adat a() on the Vi ewMet adat a instance. Call Vi ewMet adat a. get Vi ewPar anet er s() .
If the result is a non-empty Col | ect i on, do not call f acesCont ext . r ender Response(), otherwise do call
f acesCont ext . render Response() . If it turns out that the previous call to cr eat eVi ewiet adat a() did not
create a Ul Vi ewRoot instance, call cr eat eVi ew() on the Vi ewHandl er.

Call r ender Response() on the FacesCont ext .
= Publish an Post AddToVi ewEvent with the created Ul Vi ewRoot as the event source.[P1-end]

At the end of this phase, the vi ewRoot property of the FacesCont ext instance for the current request will reflect the
saved configuration of the view generated by the previous Faces Response, or a new view returned by
Vi ewHandl er. creat eVi ew() for the view identifier.

Apply Request Values

The purpose of the Apply Request Values phase of the request processing lifecycle is to give each component the
opportunity to update its current state from the information included in the current request (parameters, headers, cookies,
and so on). When the information from the current request has been examined to update the component’s current state,
the component is said to have a “local value”.

[P1-start-applyRequestDecode]During the Apply Request Values phase, the JSF implementation must call the
processDecodes() method of the Ul Vi ewRoot of the component tree.[P1-end] This will normally cause the
processDecodes() method of each component in the tree to be called recursively, as described in the Javadocs for
the Ul Conponent . pr ocessDecodes() method. [P1-start-partialDecode] The pr ocessDecodes() method must
determine if the current request is a “partial request” by calling FacesCont ext . i sParti al Request (). If
FacesCont ext.isParti al Request () returnstrue, perform the sequence of steps as outlined in Section 2.2.2.1
“Apply Request Values Partial Processing”.[P1-end] Details of the decoding process follow. [P1-start-
applyRequestConversion]For Ul | nput components, data conversion must occur as described in the Ul | nput
Javadocs.[P1-end]

During the decoding of request values, some components perform special processing, including:

= Components that implement Act i onSour ce (such as Ul Conmand), which recognize that they were activated, will
queue an Act i onEvent . The event will be delivered at the end of Apply Request Values phase if the i mmedi at e
property of the component is t r ue, or at the end of Invoke Application phase if it is f al se.

= Components that implement Edi t abl eVal ueHol der (such as Ul | nput), and whose i nredi at e property is set
to t r ue, will cause the conversion and validation processing (including the potential to fire Val ueChangeEvent
events) that normally happens during Process Validations phase to occur during Apply Request Values phase instead.

As described in Section 2.3 “Common Event Processing”, the pr ocessDecodes() method on the Ul Vi ewRoot
component at the root of the component tree will have caused any queued events to be broadcast to interested listeners.

At the end of this phase, all Edi t abl eVal ueHol der components in the component tree will have been updated with
new submitted values included in this request (or enough data to reproduce incorrect input will have been stored, if there
were conversion errors). In addition, conversion and validation will have been performed on Edi t abl eVal ueHol der
components whose i nredi at e property is set to t r ue. Conversions and validations that failed will have caused
messages to be enqueued via calls to the addMessage() method of the FacesCont ext instance for the current
request, and the val i d property on the corresponding component(s) will be set to f al se.

Chapter 2 Request Processing Lifecycle 2-5

2.2.2.1

2.2.3

2.2.3.1

If any of the decode() methods that were invoked, or an event listener that processed a queued event, called
responseConpl et e() on the FacesCont ext instance for the current request, clear the remaining events from the
event queue and terminate lifecycle processing of the current request. [P1-start-applyRequestComplete]If any of the
decode() methods that were invoked, or an event listener that processed a queued event, called r ender Response()
on the FacesCont ext instance for the current request, clear the remaining events from the event queue and transfer
control to the Render Response phase of the request processing lifecycle. Otherwise, control must proceed to the Process
Validations phase.[P1-end]

Apply Request Values Partial Processing

[P1-start-apply-partial-processing]Call FacesContext.getPartial ViewContext(). Call PartialViewContext.processPartial()
passing the FacesContext, PhaseID.APPLY REQUEST_ VALUES as arguments. [P1-end]

Process Validations

As part of the creation of the view for this request, zero or more Val i dat or instances may have been registered for
each component. In addition, component classes themselves may implement validation logic in their val i dat e()
methods.

[P1-start-validation]During the Process Validations phase of the request processing lifecycle, the JSF implementation
must call the pr ocessVal i dat or s() method of the Ul Vi ewRoot of the tree.[P1-end] This will normally cause the
processVal i dat or s() method of each component in the tree to be called recursively, as described in the API
reference for the Ul Conponent . processVal i dat or s() method. [P1-start-partial Validate] The

processVal i dat ors() method must determine if the current request is a “partial request” by calling

FacesCont ext.isParti al Request (). If FacesCont ext.isParti al Request () returnstrue, perform
the sequence of steps as outlined in Section 2.2.3.1 “Partial Validations Partial Processing”.[P1-end] Note that

Edi t abl eVal ueHol der components whose i mredi at e property is set to t r ue will have had their conversion and
validation processing performed during Apply Request Values phase.

During the processing of validations, events may have been queued by the components and/or Val i dat or s whose
val i dat e() method was invoked. As described in Section 2.3 “Common Event Processing”, the

processVal i dat or s() method on the Ul Vi ewRoot component at the root of the component tree will have caused
any queued events to be broadcast to interested listeners.

At the end of this phase, all conversions and configured validations will have been completed. Conversions and
Validations that failed will have caused messages to be enqueued via calls to the addMessage() method of the
FacesCont ext instance for the current request, and the val i d property on the corresponding components will have
been set to f al se.

If any of the val i dat e() methods that were invoked, or an event listener that processed a queued event, called
responseConpl et e() on the FacesCont ext instance for the current request, clear the remaining events from the
event queue and terminate lifecycle processing of the current request. [P1-start-validationValidate]If any of the

val i dat e() methods that were invoked, or an event listener that processed a queued event, called

render Response() on the FacesCont ext instance for the current request, clear the remaining events from the
event queue and transfer control to the Render Response phase of the request processing lifecycle. Otherwise, control
must proceed to the Update Model Values phase.[P1-end]

Partial Validations Partial Processing

[P1-start-val-partial-processing]Call FacesContext.getPartial ViewContext(). Call PartialViewContext.processPartial()
passing the FacesContext, PhaseID.PROCESS VALIDATIONS as arguments. [P1-end]

[2-6 JavaServer Faces Specification « June 2009

224

2.2.4.1

2.2.5

Update Model Values

If this phase of the request processing lifecycle is reached, it is assumed that the incoming request is syntactically and
semantically valid (according to the validations that were performed), that the local value of every component in the
component tree has been updated, and that it is now appropriate to update the application's model data in preparation for
performing any application events that have been enqueued.

[P1-start-updateModel|During the Update Model Values phase, the JSF implementation must call the

processUpdat es() method of the Ul Vi ewRoot component of the tree.[P1-end] This will normally cause the
processUpdat es() method of each component in the tree to be called recursively, as described in the API reference
for the Ul Conponent . pr ocessUpdat es() method. [P1-start-partialUpdate] The pr ocessUpdat es() method
must determine if the current request is a “partial request” by calling FacesCont ext . i sParti al Request (). If
FacesCont ext.isParti al Request () returnstrue, perform the sequence of steps as outlined in Section 2.2.4.1
“Update Model Values Partial Processing”. [P1-end]The actual model update for a particular component is done in the
updat eMbdel () method for that component.

During the processing of model updates, events may have been queued by the components whose updat eMbdel ()
method was invoked. As described in Section 2.3 “Common Event Processing”, the pr ocessUpdat es() method on
the UIViewRoot component at the root of the component tree will have caused any queued events to be broadcast to
interested listeners.

At the end of this phase, all appropriate model data objects will have had their values updated to match the local value
of the corresponding component, and the component local values will have been cleared.

If any of the updat eMbdel () methods that were invoked, or an event listener that processed a queued event, called
responseConpl et e() on the FacesCont ext instance for the current request, clear the remaining events from the
event queue and terminate lifecycle processing of the current request. [P1-start-updateModelComplete]If any of the
updat eMbdel () methods that was invoked, or an event listener that processed a queued event, called

render Response() on the FacesCont ext instance for the current request, clear the remaining events from the
event queue and transfer control to the Render Response phase of the request processing lifecycle. Otherwise, control
must proceed to the Invoke Application phase.[P1-end]

Update Model Values Partial Processing

[P1-start-upd-partial-processing]Call FacesContext.getPartial ViewContext(). Call Partial ViewContext.processPartial()
passing the FacesContext, PhaseID.UPDATE MODEL VALUES as arguments. [P1-end]

Invoke Application

If this phase of the request processing lifecycle is reached, it is assumed that all model updates have been completed, and
any remaining event broadcast to the application needs to be performed. [P1-start-invokeApplication]The
implementation must ensure that the pr ocessAppl i cati on() method of the Ul Vi ewRoot instance is called.[P1-
end] The default behavior of this method will be to broadcast any queued events that specify a phase identifier of
Phasel d. | NVOKE_APPLI CATI ON. If r esponseConpl et e() was called on the FacesCont ext instance for the
current request, clear the remaining events from the event queue and terminate lifecycle processing of the current
request. If r ender Response() was called on the FacesCont ext instance for the current request, clear the
remaining events from the event queue.

Advanced applications (or application frameworks) may replace the default Act i onLi st ener instance by calling the
set Acti onLi st ener () method on the Appl i cati on instance for this application. [P1-start-
invokeApplicationListener]However, the JSF implementation must provide a default Act i onLi st ener instance that
behaves as described in Section 7.1.1 “ActionListener Property”.[P1-end]

Chapter 2 Request Processing Lifecycle 2-7

2.2.6 Render Response

This phase accomplishes two things:

1.

Causes the response to be rendered to the client

| 2. Causes the state of the response to be saved for processing on subsequent requests.

JSF supports a range of approaches that JSF implementations may utilize in creating the response text that corresponds
to the contents of the response view, including:

Deriving all of the response content directly from the results of the encoding methods (on either the components or
the corresponding renderers) that are called.

Interleaving the results of component encoding with content that is dynamically generated by application
programming logic.

Interleaving the results of component encoding with content that is copied from a static “template” resource.
Interleaving the results of component encoding by embedding calls to the encoding methods into a dynamic resource
(such as representing the components as custom tags in a JSP page).

Because of the number of possible options, the mechanism for implementing the Render Response phase cannot be
specified precisely. [P1-start-renderResponse|However, all JSF implementations of this phase must conform to the
following requirements:

If it is possible to obtain a Vi ewDecl ar at i onLanguage instance for the current vi ew d, from the
Vi ewHandl er, its bui | dVi ew() method must be called.

Publish the j avax. f aces. event . PreRender Vi ewEvent .

JSF implementations must provide a default Vi ewHand| er implementation that is capable of handling views written
in JSP as well as views written in the Faces View Declaration Language (VDL). In the case of JSP, the ViewHandler
must perform a Request Di spat cher . f orwar d() call to a web application resource whose context-relative path
is equal to the view identifier of the component tree.

If all of the response content is being derived from the encoding methods of the component or associated

Render er s, the component tree should be walked in the same depth-first manner as was used in earlier phases to
process the component tree, but subject to the additional constraints listed here. Generally this is handled by a call to
Vi ewHandl er. render Vi ew() .

If the response content is being interleaved from additional sources and the encoding methods, the components may
be selected for rendering in any desired order!.

During the rendering process, additional components may be added to the component tree based on information
available to the Vi ewHand| er implementation?. However, before adding a new component, the Vi ewHandl er
implementation must first check for the existence of the corresponding component in the component tree. If the
component already exists (perhaps because a previous phase has pre-created one or more components), the existing
component’s properties and attributes must be utilized.

Under no circumstances should a component be selected for rendering when its parent component, or any of its
ancestors in the component tree, has its r ender sChi | dr en property set to true. In such cases, the parent or
ancestor component must render the content of this child component when the parent or ancestor was selected.

If the i sRender ed() method of a component returns f al se, the renderer for that component must not generate
any markup, and none of its facets or children (if any) should be rendered.

It must be possible for the application to programmatically modify the component tree at any time during the request
processing lifecycle (except during the rendering of the view) and have the system behave as expected. For example,
the following must be permitted. Modification of the view during rendering may lead to undefined results. It must be
possible to allow components added by the templating system (such as JSP) to be removed from the tree before
rendering. It must be possible to programmatically add components to the tree and have them render in the proper
place in the hierarchy. It must be possible to re-order components in the tree before rendering. These manipulations

1.

2.

Typically, component selection will be driven by the occurrence of special markup (such as the existence of a JSP custom tag) in the template text associated
with the component tree.

For example, this technique is used when custom tags in JSP pages are utilized as the rendering technology, as described in Chapter 9 “Integration with JSP.

[2-8 JavaServer Faces Specification « June 2009

do require that any components added to the tree have ids that are unique within the scope of the closest parent
Nam ngCont ai ner component. The value of the r ender sChi | dr en property is handled as expected, and may
be either t rue or f al se.

= For partial requests, where partial view rendering is required, there must be no content written outside of the view
(outside f : vi ew). Response writing must be disabled. Response writing must be enabled again at the start of
encodeBegi n.

When each particular component in the component tree is selected for rendering, calls to its encodeXxx() methods
must be performed in the manner described in Section 3.1.13 “Component Specialization Methods”. For components that
implement Val ueHol der (such as Ul | nput and Ul Qut put), data conversion must occur as described in the

Ul Qut put Javadocs.

Upon completion of rendering, the completed state of the view must have been saved using the methods of the class
St at eManager . This state information must be made accessible on a subsequent request, so that the Restore View can
access it.[P1-end] For more on St at eManager, see Section 7.7.3 “State Saving Methods.”

2.3

Common Event Processing

For a complete description of the event processing model for JavaServer Faces components, see Section 3.4 “Event and
Listener Model”.

During several phases of the request processing lifecycle, as described in Section 2.2 “Standard Request Processing
Lifecycle Phases”, the possibility exists for events to be queued (via a call to the queueEvent () method on the source
Ul Conponent instance, or a call to the queue() method on the FacesEvent instance), which must now be
broadcast to interested event listeners. The broadcast is performed as a side effect of calling the appropriate lifecycle
management method (pr ocessDecodes(), processVal i dat ors(), processUpdat es(), or
processApplication()) onthe U Vi ewRoot instance at the root of the current component tree.

[P1-start-eventBroadcast]For each queued event, the br oadcast () method of the source Ul Component must be
called to broadcast the event to all event listeners who have registered an interest, on this source component for events
of the specified type, after which the event is removed from the event queue.[P1-end] See the API reference for the

Ul Conmponent . br oadcast () method for the detailed functional requirements.

It is also possible for event listeners to cause additional events to be enqueued for processing during the current phase of
the request processing lifecycle. [P1-start-eventOrder|Such events must be broadcast in the order they were enqueued,
after all originally queued events have been broadcast, before the lifecycle management method returns.[P1-end]

2.4

24.1

Common Application Activities

The following subsections describe common activities that may be undertaken by an application that is using JSF to
process an incoming request and/or create an outgoing response. Their use is described in Section 2.1 “Request
Processing Lifecycle Scenarios”, for each request processing lifecycle scenario in which the activity is relevant.

Acquire Faces Object References

This phase is only required when the request being processed was not submitted from a previous response, and therefore
did not initiate the Faces Request Generates Faces Response lifecycle. In order to generate a Faces Response, the
application must first acquire references to several objects provided by the JSF implementation, as described below.

Chapter 2 Request Processing Lifecycle 2-9

24.1.1

24.1.2

24.2

Acquire and Configure Lifecycle Reference

[P1-start-lifeReference]As described in Section 12.1 “Lifecycle”, the JSF implementation must provide an instance of
javax.faces.lifecycle. Lifecycl e that may be utilized to manage the remainder of the request processing
lifecycle.[P1-end] An application may acquire a reference to this instance in a portable manner, as follows:

Li fecycl eFactory | Factory = (Lifecycl eFactory)

Fact or yFi nder . get Fact or y(Fact or yFi nder. LI FECYCLE_FACTCRY) ;
Li fecycle lifecycle =

| Factory. getLi fecycl e(Lifecycl eFact ory. DEFAULT_LI FECYCLE) ;

It is also legal to specify a different lifecycle identifier as a parameter to the get Li f ecycl e() method, as long as this
identifier is recognized and supported by the JSF implementation you are using. However, using a non-default lifecycle
identifier will generally not be portable to any other JSF implementation.

Acquire and Configure FacesContext Reference

[P1-start-contextReference]As described in Section 6.1 “FacesContext”, the JSF implementation must provide an
instance of j avax. f aces. cont ext. FacesCont ext to contain all of the per-request state information for a Faces
Request or a Faces Response. An application that is processing a Non-Faces Request, but wants to create a Faces
Response, must acquire a reference to a FacesCont ext instance as follows

FacesCont ext Factory fcFactory = (FacesCont ext Factory)
Fact or yFi nder . get Fact or y(Fact or yFi nder. FACES_CONTEXT_FACTCRY) ;
FacesCont ext facesContext =
fcFact ory. get FacesCont ext (cont ext, request, response,
lifecycle);

where the cont ext, r equest, and r esponse objects represent the corresponding instances for the application
environment.[P1-end] For example, in a servlet-based application, these would be the Ser vl et Cont ext,
Ht t pSer vl et Request, and Ht t pSer vl et Response instances for the current request.

Create And Configure A New View

When a Faces response is being intially created, or when the application decides it wants to create and configure a new
view that will ultimately be rendered, it may follow the steps described below in order to set up the view that will be
used. You must start with a reference to a FacesCont ext instance for the current request.

J2-10 JavaServer Faces Specification « June 2009

2.4.2.1

2422

Create A New View

Views are represented by a data structure rooted in an instance of j avax. f aces. conponent . Ul Vi ewRoot , and
identified by a view identifier whose meaning depends on the Vi ewHand! er implementation to be used during the
Render Response phase of the request processing lifecycle3. The Vi ewHand| er provides a factory method that may be
utilized to construct new component trees, as follows:

String viewld = ...identifier of the desired Tree...;
Vi ewHandl er vi ewHandl er = application. get Vi ewHandl er () ;
U Vi ewRoot vi ew = vi ewHandl er. creat eVi ew(facesContext, viewd);

[P1-start-createViewRoot]The Ul Vi ewRoot instance returned by the cr eat eVi ew() method must minimally contain
a single Ul Vi ewRoot provided by the JSF implementation, which must encapsulate any implementation-specific
component management that is required.[P1-end] Optionally, a JSF implementation’s Vi ewHand| er may support the
automatic population of the returned Ul Vi ewRoot with additional components, perhaps based on some external
metadata description.

[P1-start-createView]The caller of Vi ewHandl er . cr eat eVi ew() must cause the FacesCont ext to be populated
with the new Ul Vi ewRoot . Applications must make sure that it is safe to discard any state saved in the view rooted at
the Ul Vi ewRoot currently stored in the FacesCont ext .[P1-end] If Facelets is the page definition language,
FacesCont ext . set Vi ewRoot () must be called before returning from Vi ewHandl er . creat eVi ew(). Referto
Section 7.5.2 “Default ViewHandler Implementation” for more Vi ewHand| er details.

Configure the Desired RenderKit

[P1-start-defaultRenderkit]The Ul Vi ewRoot instance provided by the Vi ewHandl er, as described in the previous
subsection, must automatically be configured to utilize the default j avax. f aces. render . Render Ki t
implementation provided by the JSF implementation, as described in Section 8.1 “RenderKit”. This Render Ki t must
support the standard components and Render er s described later in this specification, to maximize the portability of
your application.[P1-end]

However, a different Render Ki t instance provided by your JSF implementation (or as an add-on library) may be
utilized instead, if desired. A reference to this Render Ki t instance can be obtained from the standard
Render Ki t Fact ory, and then assigned to the Ul Vi ewRoot instance created previously, as follows:

String renderKitld = ... identifier of desired RenderKit ...;
RenderKitFactory rkFactory = (RenderKitFactory)
Fact or yFi nder . get Fact or y(Fact or yFi nder. RENDER_KI T_FACTCORY) ;
RenderKit renderKit = rkFactory. get RenderKit(renderKitld,
facesCont ext);
vi ew. set RenderKitld(renderKitld);

As described in Chapter 8, changing the Render Ki t being used changes the set of Render er s that will actually
perform decoding and encoding activities. Because the components themselves store only a r ender er Type property (a
logical identifier of a particular Render er), it is thus very easy to switch between Render Ki t s, as long as they
support renderers with the same renderer types.

[P1-start-calcRenderkitld] The default Vi ewHandl er must call cal cul at eRender Ki t I d() on itself and set the
result into the Ul Vi ewRoot ’s render Ki t | d property.[P1-end] This allows applications that use alternative
Render Ki t s to dynamically switch on a per-view basis.

3. Thedefault Vi ewHand| er implementation performs a Request Di spat cher . f or war d call to the web application resource that will actually perform the
rendering, so it expects the tree identifier to be the context-relative path (starting with a/ character) of the web application resource

Chapter 2 Request Processing Lifecycle 2-11

2423

2424

Configure The View’s Components

At any time, the application can add new components to the view, remove them, or modify the attributes and properties
of existing components. For example, a new FooConponent (an implementation of U Conponent) can be added as a
child to the root Ul Vi ewRoot in the component tree as follows:

FooConponent conponent = ...create a FooConponent instance...;
facesCont ext . get Vi ewRoot (). get Chi | dren(). add(conponent);

Store the new View in the FacesContext

[P1-start-setViewRoot]Once the view has been created and configured, the FacesCont ext instance for this request
must be made aware of it by calling set Vi ewRoot () .[P1-end]

2.5

2.5.1

2.5.1.1

2.5.1.2

Concepts that impact several lifecycle phases

This section is intended to give the reader a “big picture” perspective on several complex concepts that impact several
request processing lifecycle phases.

Value Handling

At a fundamental level, JavaServer Faces is a way to get values from the user, into your model tier for processing. The
process by which values flow from the user to the model has been documented elsewhere in this spec, but a brief holistic
survey comes in handy. The following description assumes the JSP/HTTP case, and that all components have Renderers.

Apply Request Values Phase

The user presses a button that causes a form submit to occur. This causes the state of the form to be sent as nane=
val ue pairs in the POST data of the HTTP request. The JSF request processing lifecycle is entered, and eventually we
come to the Apply Request Values Phase. In this phase, the decode() method for each Render er for each

Ul Component in the view is called. The Render er takes the value from the request and passes it to the

set Submi t t edVal ue() method of the component, which is, of course, an instance of Edi t abl eVal ueHol der. If
the component has the "i nredi at e" property set to t r ue, we execute validation immediately after decoding. See
below for what happens when we execute validation.

Process Validators Phase

processVal i dat ors() is called on the root of the view. For each Edi t abl eVal ueHol der in the view, If the
“i mmedi at e” property is not set, we execute validation for each Ul | nput in the view. Otherwise, validation has
already occurred and this phase is a no-op.

[2-12 JavaServer Faces Specification « June 2009

2.5.13

2.5.14

2.5.2

2.5.2.1

Executing Validation

Please see the javadocs for Ul | nput . val i dat e() for more details, but basically, this method gets the submitted
value from the component (set during Apply Request Values), gets the Render er for the component and calls its
get Convert edVal ue(), passing the submitted value. If a conversion error occurs, it is dealt with as described in the
javadocs for that method. Otherwise, all validators attached to the component are asked to validate the converted value.
If any validation errors occur, they are dealt with as described in the javadocs for Val i dat or. val i dat e(). The
converted value is pushed into the component's set Val ue() method, and a Val ueChangeEvent is fired if the value
has changed.

Update Model Values Phase

For each Ul | nput component in the view, its updat eModel () method is called. This method only takes action if a
local value was set when validation executed and if the page author configured this component to push its value to the
model tier. This phase simply causes the converted local value of the Ul | nput component to be pushed to the model in
the way specified by the page author. Any errors that occur as a result of the attempt to push the value to the model tier
are dealt with as described in the javadocs for Ul | nput . updat eMbdel ().

Localization and Internationalization (L10N/I18N)

JavaServer Faces is fully internationalized. The 118N capability in JavaServer Faces builds on the 18N concepts offered
in the Servlet, JSP and JSTL specifications. [18N happens at several points in the request processing lifecycle, but it is
easiest to explain what goes on by breaking the task down by function.

Determining the active Local e

JSF has the concept of an active Local e which is used to look up all localized resources. Converters must use this
Local e when performing their conversion. This Local e is stored as the value of the | ocal e JavaBeans property on
the Ul Vi ewRoot of the current FacesCont ext . The application developer can tell JSF what locales the application
supports in the applications’ VEB- | NF/ f aces- confi g. xm file. For example:

<faces-config>
<appl i cati on>
<l ocal e-confi g>
<defaul t -1 ocal e>en</ defaul t-| ocal e>
<support ed-1 ocal e>de</ support ed- | ocal e>
<support ed-1 ocal e>fr</supported-| ocal e>
<support ed-1 ocal e>es</ support ed- | ocal e>
</l ocal e-confi g>
</ application>

This application’s default locale is en, but it also supports de, fr, and es locales. These elements cause the
Appl i cat i on instance to be populated with Local e data. Please see the javadocs for details.

The Ul Vi ewRoot ’s Local e is determined and set by the Vi ewHand| er during the execution of the

Vi ewHandl er ’s cr eat eVi ew() method. [P1-start-locale]This method must cause the active Local e to be
determined by looking at the user’s preferences combined with the application’s stated supported locales.[P1-end] Please
see the javadocs for details.

The application can call Ul Vi ewRoot . set Local e() directly, but it is also possible for the page author to override
the Ul Vi ewRoot ’s locale by using the | ocal e attribute on the <f : vi ew> tag. [P1-start-localeValue]The value of this
attribute must be specified as | anguage[{-| _}country[{-]| _}vari ant]] without the colons, for example

"j a_JP_SJI S". The separators between the segments must be '-' or '_".[P1-end]

Chapter 2 Request Processing Lifecycle 2-13

2522

2523

In all cases where JSP is utilized, the active Local e is set under “request scope” into the JSTL class
javax.servlet.jsp.jstl.core.Confi g, under the key Confi g. FMI_LOCALE

Determining the Character Encoding
The request and response character encoding are set and interpreted as follows.

On an initial request to a Faces webapp, the request character encoding is left unmodified, relying on the underlying
request object (e.g., the servlet or portlet request) to parse request parameter correctly.

[P1-start-setLocale]At the beginning of the render-response phase, the ViewHandler must ensure that the response Locale
is set to be that of the UIViewRoot, for example by calling Ser vl et Response. set Local e() when running in the
servlet environment.[P1-end] Setting the response Locale may affect the response character encoding, see the Servlet and
Portlet specifications for details.

[P1-start-encoding]At the end of the render-response phase, the ViewHandler must store the response character encoding
used by the underlying response object (e.g., the servlet or portlet response) in the session (if and only if a session
already exists) under a well known, implementation-dependent key.

On a subsequent postback, before any of the ExternalContext methods for accessing request parameters are invoked, the
ViewHandler must examine the Content-Type header to read the charset attribute and use its value to set it as the request
encoding for the underlying request object. If the Content-Type header doesn't contain a charset attribute, the encoding
previously stored in the session (if and only if a session already exists), must be used to set the encoding for the
underlying request object. If no character encoding is found, the request encoding must be left unmodified.[P1-end]

The above algorithm allows an application to use the mechanisms of the underlying technologies to adjust both the
request and response encoding in an application-specific manner, for instance using the page directive with a fixed
character encoding defined in the contentType attribute in a JSP page, see the Servlet, Portlet and JSP specifications for
details. Note, though, that the character encoding rules prior to Servlet 2.4 and JSP 2.0 are imprecise and special care
must be taken for portability between containers.

Localized Text

There is no direct support for this in the API, but the JSP layer provides a convenience tag that converts a

Resour ceBundl e into a j ava. uti | . Map and stores it in the scoped namespace so all may get to it. This section
describes how resources displayed to the end user may be localized. This includes images, labels, button text, tooltips, alt
text, etc.

Since most JSF components allow pulling their display value from the model tier, it is easy to do the localization at the
model tier level. As a convenience, JSF provides the <f : | oadBund| e> tag, which takes a Resour ceBundl| e and
loads it into a Map, which is then stored in the scoped namespace in request scope, thus making its messages available
using the same mechanism for accessing data in the model tier. For example:

<f:l oadBundl e basenane="com f 00. i ndustryMessages. cheni cal ”
var =" messages” />
<h: out put Text val ue="#{nmessages. benzene}” />
This must cause the Resour ceBundl e named com f 00. i ndust ryMessages. chem cal to be loaded as a Map

into the request scope under the key messages. Localized content can then be pulled out of it using the normal value
expression syntax.

[2-14 JavaServer Faces Specification « June 2009

2524

Localized Application Messages

This section describes how JSF handles localized error and informational messages that occur as a result of conversion,
validation, or other application actions during the request processing lifecycle. The JSF class

javax. faces. appl i cati on. FacesMessage is provided to encapsulate summary, detail, and severity information
for a message. [P1-start-bundle]A JSF implementation must provide a j avax. f aces. Messages

Resour ceBundl e containing all of the necessary keys for the standard messages. The required keys (and a non-
normative indication of the intended message text) are as follows:

= javax.faces.component.Ullnput. CONVERSION -- {0}: Conversion error occurred

= javax.faces.component.UlInput. REQUIRED -- {0}: Validation Error: Value is required

= javax.faces.component.Ullnput. UPDATE -- {0}: An error occurred when processing your submitted information
= javax.faces.component.UISelectOne.INVALID -- {0}: Validation Error: Value is not valid

= javax.faces.component.UlSelectMany.INVALID -- {0}: Validation Error: Value is not valid

= javax.faces.converter.BigDecimalConverter DECIMAL={2}: "{0}" must be a signed decimal number.

= javax.faces.converter.BigDecimalConverter DECIMAL _detail={2}: "{0}" must be a signed decimal number
consisting of zero or more digits, that may be followed by a decimal point and fraction. Example: {1}

= javax.faces.converter.BigIntegerConverter. BIGINTEGER={2}: "{0}" must be a number consisting of one or more
digits.

= javax.faces.converter.BigintegerConverter. BIGINTEGER _detail={2}: "{0}" must be a number consisting of one or
more digits. Example: {1}

= javax.faces.converter.BooleanConverter. BOOLEAN={1}: "{0}" must be 'true' or 'false'.

= javax.faces.converter.BooleanConverter. BOOLEAN detail={1}: "{0}" must be 'true' or 'false'. Any value other than
'true' will evaluate to 'false'.

= javax.faces.converter.ByteConverter.BYTE={2}: "{0}" must be a number between 0 and 255.

= javax.faces.converter.ByteConverter. BYTE detail={2}: "{0}" must be a number between 0 and 255. Example: {1}
= javax.faces.converter.CharacterConverter. CHARACTER={1}: "{0}" must be a valid character.

= javax.faces.converter.CharacterConverter. CHARACTER detail={1}: "{0}" must be a valid ASCII character.

= javax.faces.converter.DateTimeConverter. DATE={2}: "{0}" could not be understood as a date.

= javax.faces.converter.DateTimeConverter. DATE_detail={2}: "{0}" could not be understood as a date. Example: {1}
= javax.faces.converter.DateTimeConverter. TIME={2}: "{0}" could not be understood as a time.

= javax.faces.converter.DateTimeConverter. TIME_detail={2}: "{0}" could not be understood as a time. Example: {1}
= javax.faces.converter.DateTimeConverter. DATETIME={2}: "{0}" could not be understood as a date and time.

= javax.faces.converter.DateTimeConverter. DATETIME detail={2}: "{0}" could not be understood as a date and time.
Example: {1}

= javax.faces.converter.DateTimeConverter PATTERN TYPE={1}: A 'pattern' or 'type' attribute must be specified to
convert the value "{0}".

= javax.faces.converter.DoubleConverter DOUBLE={2}: "{0}" must be a number consisting of one or more digits.

= javax.faces.converter.DoubleConverter DOUBLE_detail={2}: "{0}" must be a number between 4.9E-324 and
1.7976931348623157E308 Example: {1}

= javax.faces.converter. EnumConverter. ENUM={2}: "{0}" must be convertible to an enum.

= javax.faces.converter. EnumConverter. ENUM_detail={2}: "{0}" must be convertible to an enum from the enum that
contains the constant "{1}".

= javax.faces.converter. EnumConverte. ENUM_NO CLASS={1}: "{0}" must be convertible to an enum from the
enum, but no enum class provided.

= javax.faces.converter.EnumConverte ENUM_NO_CLASS detail={1}: "{0}" must be convertible to an enum from
the enum, but no enum class provided.

= javax.faces.converter.FloatConverter. FLOAT={2}: "{0}" must be a number consisting of one or more digits.

Chapter 2 Request Processing Lifecycle 2-15

[2-16

javax.faces.converter.FloatConverter. FLOAT detail={2}: "{0}" must be a number between 1.4E-45 and
3.4028235E38 Example: {1}

javax.faces.converter.IntegerConverter. INTEGER={2}: "{0}" must be a number consisting of one or more digits.

javax.faces.converter.IntegerConverter. INTEGER _detail={2}: "{0}" must be a number between -2147483648 and
2147483647 Example: {1}

javax.faces.converter.LongConverter. LONG={2}: "{0}" must be a number consisting of one or more digits.

javax.faces.converter.LongConverter. LONG_detail={2}: "{0}" must be a number between -9223372036854775808 to
9223372036854775807 Example: {1}

javax.faces.converter.NumberConverter. CURRENCY={2}: "{0}" could not be understood as a currency value.

javax.faces.converter. NumberConverter. CURRENCY _detail={2}: "{0}" could not be understood as a currency value.
Example: {1}

javax.faces.converter. NumberConverter. PERCENT={2}: "{0}" could not be understood as a percentage.

javax.faces.converter. NumberConverter, PERCENT detail={2}: "{0}" could not be understood as a percentage.
Example: {1}

javax.faces.converter.NumberConverter NUMBER={2}: "{0}" is not a number.

javax.faces.converter. NumberConverter NUMBER _detail={2}: "{0}" is not a number. Example: {1}
javax.faces.converter.NumberConverter. PATTERN={2}: "{0}" is not a number pattern.
javax.faces.converter.NumberConverter. PATTERN detail={2}: "{0}" is not a number pattern. Example: {1}
javax.faces.converter.ShortConverter. SHORT={2}: "{0}" must be a number consisting of one or more digits.
javax.faces.converter.ShortConverter. SHORT detail={2}: "{0}" must be a number between -32768 and 32767
Example: {1}

javax.faces.converter. STRING={1}: Could not convert "{0}" to a string.
javax.faces.validator.BeanValidator MESSAGE -- {0}

javax.faces.validator.DoubleRangeValidator MAXIMUM -- {1}: Validation Error: Value is greater than allowable
maximum of <’{0}”

javax.faces.validator.DoubleRangeValidator. MINIMUM -- {1}: Validation Error: Value is less than allowable
minimum of <’ {0}”

javax.faces.validator.DoubleRangeValidator.NOT IN_ RANGE -- {2}: Validation Error: Specified attribute is not
between the expected values of {0} and {1}.

javax.faces.validator.DoubleRangeValidator. TYPE -- {0}: Validation Error: Value is not of the correct type

javax.faces.validator.LengthValidator MAXIMUM -- {1}: Validation Error: Value is greater than allowable maximum
Of [{0} 2

javax.faces.validator.LengthValidator. MINIMUM -- {1}: Validation Error: Value is less than allowable minimum of
(%] {0} 2

javax.faces.validator.LongRangeValidator MAXIMUM -- {1}: Validation Error: Value is greater than allowable
maximum of <’{0}”

javax.faces.validator.LongRangeValidator. MINIMUM -- {1}: Validation Error Value is less than allowable minimum
Of [{0} 2

javax.faces.validator.LongRangeValidator NOT_IN_RANGE={2}: Validation Error: Specified attribute is not between
the expected values of {0} and {1}.

javax.faces.validator.LongRangeValidator. TYPE -- {0}: Validation Error: Value is not of the correct type

The following message keys are deprecated:

javax.faces.validator NOT_IN_RANGE -- Specified attribute is not between the expected values of {0} and {1}[P1-
end]

JavaServer Faces Specification « June 2009

253

2531

A JSF application may provide its own messages, or overrides to the standard messages by supplying a <message-
bundl e> element to in the application configuration resources. Since the Resour ceBund| e provided in the Java
platform has no notion of summary or detail, JSF adopts the policy that Resour ceBundl e key for the message looks
up the message summary. The detail is stored under the same key as the summary, with _det ai | appended. [P1-start-
bundleKey]|These Resour ceBundl e keys must be used to look up the necessary values to create a localized
FacesMessage instance. Note that the value of the summary and detail keys in the Resour ceBundl e may contain
parameter substitution tokens, which must be substituted with the appropriate values using

j ava. t ext . MessageFor mat .[P1-end] Replace the last parameter substitution token shown in the messages above
with the input component’s | abel attribute. For example, { 1} for “ Doubl eRangeVal i dat or. MAXI MUM', {2}
for “Short Converter. SHORT”. Thel abel attribute is a generic attribute. Please see Section 3.1.11 “Generic
Attributes” and Section 8.6 “Standard HTML RenderKit Implementation” for more information on these attributes. If the
input component’s | abel attribute is not specified, use the component’s client identifier.

These messages can be displayed in the page using the Ul Message and Ul Messages components and their
corresponding tags, <h: nessage> and <h: nessages>.

[P1-start-facesMessage]The following algorithm must be used to create a FacesMessage instance given a message

key.

= Call get MessageBundl| e() on the Appl i cati on instance for this web application, to determine if the
application has defined a resource bundle name. If so, load that ResourceBundle and look for the message there.

= If not there, look in the j avax. f aces. Messages resource bundle.

= In either case, if a message is found, use the above conventions to create a FacesMessage instance.[P1-end]

State Management

JavaServer Faces introduces a powerful and flexible system for saving and restoring the state of the view between
requests to the server. It is useful to describe state management from several viewpoints. For the page author, state
management happens transparently. For the app assembler, state management can be configured to save the state in the
client or on the server by setting the ServletContext InitParameter named j avax. f aces. STATE_SAVI NG_METHOD to
either cl i ent or server. The value of this parameter directs the state management decisions made by the
implementation.

State Management Considerations for the Custom Component Author

Since the component developer cannot know what the state saving method will be at runtime, they must be aware of state
management. As shown in Section FIGURE 4-1 “The javax.faces.component package”, all JSF components implement
the St at eHol der interface. As a consequence the standard components provide implementations of St at eHol der to
suit their needs. [P1-start-componentStateHolder]A custom component that extends Ul Conponent directly, and does
not extend any of the standard components must implement St at eHol der manually.[P1-end]Please see Section 3.2.4
“StateHolder” for details.

A custom component that does extend from one of the standard components and maintains its own state, in addition to
the state maintained by the superclass must take special care to implement St at eHol der correctly. [P1-start-
saveState]Notably, calls to saveSt at () must not alter the state in any way.[P1-end] The subclass is responsible for
saving and restoring the state of the superclass. Consider this example. My custom component represents a “slider” ui
widget. As such, it needs to keep track of the maximum value, minimum value, and current values as part of its state.

Chapter 2 Request Processing Lifecycle 2-17

public class Slider extends U Sel ect One {
protected Integer min = null;
protected Integer max = null;

protected I nteger cur nul | ;

/[l ... details omtted

public Object saveState(FacesContext context) {
Ooj ect val ues[] = new Ohject[4];
val ues[0] = super.saveState(context);

val ues[1l] = mn;
val ues[2] = max;
val ues[3] = cur;

public void restoreState(FacesContext context, Object state) {
oj ect values[] = (hject {}) state; // guaranteed to succeed
super.restoreState(context, values[0]);

mn (I'nteger) values[1];

max = (Integer) values[2];

cur (I'nteger) val ues[3];

}

Note that we call super . saveState() and super.restoreState() as appropriate. This is absolutely vital!
Failing to do this will prevent the component from working.

2532 State Management Considerations for the JSF Implementor

The intent of the state management facility is to make life easier for the page author, app assembler, and component
author. However, the complexity has to live somewhere, and the JSF implementor is the lucky role. Here is an overview
of the key players. Please see the javadocs for each individual class for more information.

Key Players in State Management

= Vi ewHandl er the entry point to the state management system. Uses a helper class, St at eManager, to do the
actual work. In the JSP case, delegates to the tag handler for the <f : vi ew> tag for some functionality.

= St at eManager abstraction for the hard work of state saving. Uses a helper class, ResponseSt at eManager, for
the rendering technology specific decisions.

= ResponseSt at eManager abstraction for rendering technology specific state management decisions.

= Ul Component directs process of saving and restoring individual component state.

J2-18 JavaServer Faces Specification « June 2009

2.5.4

2.5.5

Resource Handling

This section only applies to pages written using Facelets for JSF 2 and later. Section 2.6 “Resource Handling” is the
starting point for the normative specification for Resource Handling. This section gives a non-normative overview of the
feature. The following steps walk through the points in the lifecycle where this feature is encountered. Consider a Faces
web application that contains resources that have been packaged into the application as specified in Section 2.6.1
“Packaging Resources”. Assume each page in the application includes references to resources, specifically scripts and
stylesheets. The first diagram in this chapter is helpful in understanding this example.

Consider an initial request to the application.

= The Vi ewHandl er calls Vi ewDecl ar at i onLanguage. bui | dVi ew() . This ultimately causes the
processEvent () method for the j avax. f aces. resour ce. Scri pt and
javax. faces. resource. Styl esheet renderers (which implement Conponent Syst enEvent Li st ener)
to be called after each component that declares them as their renderer is added to the view. This method is specified
to take actions that cause the resource to be rendered at the correct part in the page based on user-specified or
application invariant rules. Here’s how it works.

Every Ul Conponent instance in a view is created with a call to some variant of

Appl i cation. creat eConponent (). The specification for this method now includes some annotation
processing requirements. If the component or its renderer has an @.i st ener For or @.i st ener sFor annotation,
and the Scri pt and St yl esheet renderers must, the component or its renderer are added as a component scoped
listener for the appropriate event. In the case of Scri pt and St yl esheet renderers, they must listen for the
Post AddToVi ewEvent .

When the pr ocessEvent () method is called on a Scri pt or St yl esheet renderer, the renderer takes the
specified action to move the component to the proper point in the tree based on what kind of resource it is, and on
what hints the page author has declared on the component in the view.

= The Vi ewHandl er calls Vi ewDecl ar at i onLanguage. r ender Vi ew() . The view is traversed as normal and
because the components with Scri pt and St yl esheet renderers have already been reparented to the proper place
in the view, the normal renderering causes the resource to be encoded as described in Section 2.6.2 “Rendering
Resources”.

The browser then parses the completely rendered page and proceeds to issue subsequent requests for the resources
included in the page.

Now consider a request from the browser for one of those resources included in the page.

= The request comes back to the Faces server. The FacesSer vl et is specified to call
Resour ceHandl er . i sResour ceRequest () as shown in the diagram in Section 2.1.2 “Faces Request
Generates Faces Response”. In this case, the method returns t r ue. The FacesSer vl et is specified to call
Resour ceHandl er . handl eResour ceRequest () to serve up the bytes of the resource.

View Parameters

This section only applies to pages written using Facelets for JSF 2 and later. The normative specification for this feature
is spread out across several places, including the View Declaration Language Documentation for the <f : net adat a>
element, the javadocs for the Ul Vi ewPar anet er, Vi ewHandl er, and Vi ewDecl ar at i onLanguage classes, and
the spec language requirements for the default Navi gat i onHandl er and the Request Processing Lifecycle. This leads
to a very diffuse field of specification requirements. To aid in understanding the feature, this section provides a non-
normative overview of the feature. The following steps walk through the points in the lifecycle where this feature is
encountered. Consider a web application that uses this feature exclusively on every page. Therefore every page has the
following features in common.

= Every page has an <f : net adat a> tag, with at least one <f : vi ewPar anet er > element within it.
= Every page has at least one <h: | i nk> or <h: but t on> with the appropriate parameters nested within it.

= No other kind of navigation components are used in the application.

Consider an initial request to the application.

Chapter 2 Request Processing Lifecycle 2-19

2.5.6

2.5.7

= As specified in section Section 2.2.1 “Restore View”, the restore view phase of the request processing lifecycle
detects that this is an initial request and tries to obtain the Vi ewDecl ar at i onLanguage instance from the
Vi ewHand| er for this vi ew d. Because every page in the app is written in Facelets for JSF 2.0, there is a
Vi ewDecl ar at i onLanguage instance. Restore view phase calls
Vi ewDecl ar at i onLanguage. get Vi ewet adat a() . Because every view in this particular app does have
<f : met adat a> on every page, this method returns a Vi ewiMet adat a instance. Restore view phase calls
Met aDat a. cr eat eMet adat aVi ew() . This method creates a Ul Vi ewRoot containing only children declared in
the <f : met adat a> element. Restore view phase calls Vi ewiMet adat a. get Vi ewPar anet er s() . Because
every <f : met adat a> in the app has at least one <f : vi ewPar anet er > element within it, this method returns a
non empty Col | ecti on<Ul Vi ewPar anet er >. Restore view phase uses this fact to decide that the lifecycle must
not skip straight to render response, as is the normal action taken on initial requests.

= The remaining phases of the request processing lifecycle execute: apply request values, process validations, update
model values, invoke application, and finally render response. Because the view only contains Ul Vi ewPar anet er
children, only these children are traversed during the lifecycle, but because this is an initial request, with no query
parameters, none of these compnents take any action during the lifecycle.

= Because the pages exclusively use <h: | i nk> and <h: but t on> for their navigation, the renderers for these
components are called during the rendering of the page. As specified in the renderkit docs for the renderers for those
components, markup is rendered that causes the browser to issue a GET request with query parameters.

Consider when the user clicks on a link in the application. The browser issues a GET request with query parameters

= Restore view phase takes the same action as in the previously explained request. Because this is a GET request, no
state is restored from the previous request.

= Because this is a request with query parameters, the Ul Vi ewPar anet er children do take action when they are
traversed during the normal lifecycle, reading values during the apply request values phase, doing conversion and
processing validators attached to the <f : vi ewPar anmp elements, if any, and updating models during the update
model values phase. Because there are only <h: | i nk> and <h: but t on> navigation elements in the page, no action
action will happen during the invoke application phase. The response is re-rendered as normal. In such an application,
the only navigation to a new page happens by virtue of the browser issuing a GET request to a different viewld.

Bookmarkability

Prior to JSF 2, every client server interaction was an HTTP POST. While this works fine in many situations, it does not
work well when it comes to bookmarking pages in a web application. Version 2 of the specification introduces
bookmarking capability with the use of two new Standard HTML RenderKit additions.

Provided is a new component (UIOutcomeTarget) that provides properties that are used to produce a hyperlink at render
time. The component can appear in the form of a button or a link. This feature introduces a concept known as
“preemptive navigation”, which means the target URL is determined at Render Response time - before the user has
activated the component. This feature allows the user to leverage the navigation model while also providing the ability to
generate bookmarkable non-faces requests.

JSR 303 Bean Validation

Version 2 of the specification introduces support for JSR 303 Bean Validation. [p1-beanValidationRequired]|A JSF
implentation must support JSR 303 Bean Validation if the environment in which the JSF runtime is included requires
JSR 303 Bean Validation. Currently the only such environment is when JSF is included in a Java EE 6 runtime.[pl-end]

A detailed description of the usage of Bean Validation with JSF is beyond the scope of this section, but this section will
provide a brief overview of the feature, touching on the points of interest to a spec implementor. Consider a simple web
application that has one page, written in Facelets for JSF 2, that has a several text fields inside of a form. This

J2-20 JavaServer Faces Specification « June 2009

2.5.8

2.5.9

application is running in a JSF runtime in an environment that does require JSR 303 Bean Validation, and therefore this
feature is available. Assume that every text field is bound to a managed bean property that has at leas one Bean
Validation constraint annotation attached to it.

During the render response phase that always precedes a postback, due to the specification requirements in Section 3.5.3
“Validation Registration”, every Ul | nput in this application has an instance of Val i dat or with id
j avax. f aces. Bean attached to it.

During the process validations phase, due to the specification for the val i dat e() method of this Val i dat or, Bean
Validation is invoked automatically, for the user specified validation constraints, whenever such components are
normally validated. The j avax. f aces. Bean standard validator also ensures that every Constr ai nt Vi ol ati on
that resulted in attempting to validate the model data is wrapped in a FacesMessage and added to the

FacesCont ext as normal with every other kind of validator.

Ajax

JSF and Ajax have been working well together for a number of years. this has led to the sprouting of many JSF Ajax
frameworks. Although many of these frameworks may appear different, they all contribute to a dynamic request response
experience. The variations in the way these frameworks provide that experience causes component compatibility
problems when using components from different libraries together in the same web application.

JSF 2 introduces Ajax into the specification, and it builds upon important concepts from a variety of existing JSF Ajax
frameworks. The specification introduces a JavaScript library for performing basic Ajax operations. The library helps
define a standard way of sending an Ajax request, and processing an Ajax response, since these are problem areas for
component compatability. The specification provides two ways of adding Ajax to JSF web applications. Page authors
may use the JavaScript library directly in their pages by attaching the Ajax request call to a JSF component via a
JavaScript event (such as onclick). They may also take a more declarative aproach and use a core Facelets tag (<f:ajax/>)
that they can nest within JSF components to “Ajaxify” them. It is also possible to “Ajaxify” regions of a page by
“wrapping” the tag around component groups.

The server side aspects of JSF Ajax frameworks work with the standard JSF lifecycle. In addition to providing a standard
page authoring experience, the specification also standardizes the server side processing of Ajax requests. Selected
components in a JSF view can be priocessed (known as partial processing) and selected components can be rendered to
the client (known as partial rendering).

Component Behaviors

The JSF 2 specification introduces a new type of attached object known as component behaviors. Component behaviors
play a similar role to converters and validators in that they are attached to a component instance in order to enhance the
component with additional functionality not defined by the component itself. While converters and validators are
currently limited to the server-side request processing lifecycle, component behaviors have impact that extends to the
client, within the scope of a particular instance component in a view. In particular, the Cl i ent Behavi or interface
defines a contract for behaviors that can enhance a component's rendered content with behavior-defined "scripts". These
scripts are executed on the client in response to end user interaction, but can also trigger postbacks back into the JSF
request processing lifecycle.

The usage pattern for client behaviors is as follows:

= The page author attaches a client behavior to a component, typically by specifying a behavior tag as a child of a
component tag.

= When attaching a client behavior to a component, the page author identifies the name of a client "event" to attach to.
The set of valid events are defined by the component.

= At render time, the component (or renderer) retrieves the client behavior and asks it for its script.

= The component (or renderer) renders this script at the appropriate location in its generated content (eg. typically in a
DOM event handler).

Chapter 2 Request Processing Lifecycle 2-21

2.5.10

= When the end user interacts with the component's content in the browser, the behavior-defined script is executed in
response to the page author-specified event.

= The script provides some client-side interaction, for example, hiding or showing content or validating input on the
client, and possibly posts back to the server.

The first client behavior to provided by the JSF specification is the Aj axBehavi or. This behavior is exposed to a page
author as a Facelets <f : aj ax> tag, which can be embedded within any of the standard HTML components as follows:

<h: commandBut t on>
<f:aj ax event="nouseover"/>
</ h: commandBut t on>

When activated in response to end user activity, the <f : @j ax> client behavior generates an Ajax request back into the
JSF request processing lifecycle.

The component behavior framework is extensible and allows developers to define custom behaviors and also allows
component authors to enhance custom components to work with behaviors.

System Events

System Events are normatively specified in Section 3.4.3 “System Events”. This section provides an overview of this
feature as it relates to the lifecycle.

System events expand on the idea of lifecycle PhaseEvent s. With PhaseEvent s, it is possible to have application
scoped PhaselLi st ener s that are given the opportunity to act on the system before and after each phase in the
lifecycle. System events provide a much more fine grained insight into the system, allowing application or component
scoped listeners to be notified of a variety of kinds of events. The set of events supported in the core specification is
given in Section 3.4.3.1 “Event Classes”. To accomodate extensibility, users may define their own kinds of events.

The system event feature is a simple publish/subscribe event model. There is no event queue, events are published
immediately, and always with a call to Appl i cati on. publ i shEvent (). There are several ways to declare interest
in a particular kind of event.

= Call Application. subscri beToEvent () to add an application scoped listener.
= Call U Conponent . subscri beToEvent () to add a component scoped listener.
= Use the <f : event > tag to declare a component scoped listener.

= Use the @Q.i st ener For or @Q.i st ener sFor annotation. The scope of the listener is determined by the code that
processes the annotation.

= Use the <system event - | i st ener > element in an application configuration resource to add an application

scoped listener.

This feature is conceptually related to the lifecycle because there are calls to Appl i cati on. publ i shEvent ()
sprinkled throughout the code that gets executed when the lifecycle runs.

[2-22 JavaServer Faces Specification « June 2009

2.6

2.6.1

2.6.1.1

2.6.1.2

2.6.1.3

Resource Handling

As shown in the diagram in Section 2.1.2 “Faces Request Generates Faces Response”, [P1-start isResourceRequest rules]
the JSF run-time must determine if the current Faces Request is a Faces Resource Request or a View Request. This must
be accomplished by calling Appl i cati on. get Resour ceHandl er () . i sResour ceRequest (). [Pl-end] Most

of the normative specification for resource handling is contained in the Javadocs for Resour ceHandl er and its related
classes. This section contains the specification for resource handling that fits best in prose, rather than in Javadocs.

Packaging Resources

ResourceHandler defines a path based packaging convention for resources. The default implementation of
ResourceHandler must support packaging resources in the web application root or in the classpath, according to the
following specification.Other implementations of ResourceHandler are free to package resources however they like.

Packaging Resources into the Web Application Root

[P1-start web app packaging] The default implementation must support packaging resources in the web application root
under the path

resour ces/ <resourcel dentifier>

relative to the web app root. Resources packaged into the web app root must be accessed using the get Resour ce* ()
methods on Ext er nal Cont ext . [Pl-end]

Packaging Resources into the Classpath

[P1-start classpath packaging]For the default implementation, resources packaged in the classpath must reside under the
JAR entry name:

META- | NF/ r esour ces/ <resourcel dentifier>

Resources packaged into the classpath must be accessed using the get Resour ce* () methods of the Cl assLoader
obtained by calling the get Cont ext Cl assLoader () method of the curreth Thr ead.[P1-end]

Resource Identifiers

<resourcel denti fi er > consists of several segments, specified as follows.

[P1-start requirements for something to be considered a valid resourceldentifier]

[local ePrefix/][libraryName/][li braryVersion/]resourceNane[/resourceVersion]
The run-time must enforce the following rules to consider a <r esour cel denti fi er >s valid. A

<resour cel denti fi er > that does not follow these rules must not be considered valid and must be ignored silently.

= Every character in a resource identifier must be a valid character suitable for use in a string passed to the constructor
of j ava. i 0. Fi | e that takes a single St ri ng argument.

= Segments in square brackets [] are optional.
= The segments must appear in the order shown above.

w If libraryVersion is present, it must be preceded by libraryName.

Chapter 2 Request Processing Lifecycle 2-23

If libraryVersion is present, any leaf files under /ibraryName must be ignored.

If resourceVersion is present, it must be preceded by resourceName.

There must be a ’/ > between adjacent segments in a <r esour cel denti fier>

If libraryVersion or resourceVersion are present, both must be a ’_’ separated list of integers, neither starting nor
ending with °_’

If resourceVersion is present, it must be a version number in the same format as libraryVersion. An optional “file
(132

extension” may be used with the resourceVersion. If “file extension” is used, a “.”” character, followed by a “file
extension” must be appended to the version number. See the following table for an example.

[P1-end]

The following examples illustrate the nine valid combinations of the above resource identifier segments.

localePrefx
[optional]

Tibrary
libraryName || Version | [resourceName]
[optional] [optionall | [required]

1

resource
Version Description actual resourceldentifier
[optional]

A non-localized, non-
ersioned image
duke. gi f esource called duke. gi f
'duke. gi f ", notina
ibrary

A non-localized, non-
ersioned image
esource called
'‘duke. gi f"ina
ibrary called

'cor porate"

corporate duke. gi f cor por at e/ duke. gi f

A non-localized, non-
ersioned image

esource called

'duke. gi f ", in version|
2_3 of the

'cor por at e" library

LY}
w

Corporate duke. gi f cor por at e/ 2_3/ duke. gi f

A non-localized, version
1. 3. 4 script resource
script.js |[L_3_4.js |falled"script.js",inpasic/2_3/script.js/1_3_4.js
ersioned 2_3

ibrary called "basi ¢"

hS)
w

basi c

de

A non-versioned style
esource called
neader. css A N de/ header . css
header. css

ocalized for locale "de"!

de_AT

ersion 1_4_2 of style
esource
ooter.css|[l_4_2.css |footer.css", de_AT/footer.css/1_4_2.css
ocalized for locale
'de_AT"

ersion 2_4 of style
esource called, "menu-
"
:gpfjcss p4- css D;Li-of]:ds lilirrla;l;n
g
'‘ext raFancy",
ocalized for locale "zh"!

=xt raFancy zh/ ext r aFancy/ nenu- bar. css/ 2_4. css

Non-versioned script
esource called,

aj axTransa 'aj axTr ansacti on.
ction.js s", in version 0_1 of
ibrary called "m | d",
ocalized for locale " a"

mld D_1 a/m|d/0_1/ajaxTransaction.js

de_ch

ersion 1_0 of image
esource called
'bg. png", in version
1_0 of library called
'gr assy" localized for

Jr assy 10 0g. png 1_0.png de_ch/ grassy/ 1_0/ bg. png/ 1_0. png

ocale "de_ch"

JavaServer Faces Specification < June 2009

2.6.1.4

Libraries of Localized and Versioned Resources

An important feature of the resource handler is the ability for resources to be localized, versioned, and collected into
libraries. The localization and versioning scheme is completely hidden behind the API of Resour ceHandl er and
Resour ce and is not exposed in any way to the JSF run-time.

[P1-start resource versioning] The default implementation of Resour ceHandl er . cr eat eResour ce(), for all
variants of that method, must implement the following to discover which actual resource will be encapsulated within the
returned Resour ce instance. An implementation may perform caching of the resource metadata to improve
performance if the Pr oj ect St age is Pr oj ect St age. Pr oducti on.

Using the resourceName and libraryName arguments to cr eat eResour ce(), and the resource packaging scheme
specified in Section 2.6.1.1 “Packaging Resources into the Web Application Root”, Section 2.6.1.2 “Packaging
Resources into the Classpath”, and Section 2.6.1.3 “Resource Identifiers”, discover the file or entry that contains the
bytes of the resource. If there are multiple versions of the same library, and libraryVersion is not specified, the library
with th highest version is chosen. If there are multiple versions of the same resource, and resourceVersion is not
specified, the resource with the highest version is chosen. The algorithm is specified in pseudocode.

function createResource(resourceNane, |ibraryNane) {
var prefix = web app root resource prefix;
var resourcelLoader = web app resource | oader
/'l these are shorthand for the prefix and resource | oading
/1 facility specified in Section 2.6.1.1. They are
/1 not actual APl per se.
var resource = null
var resourceld = deriveResourcel d(prefix, resourceLoader,
resourceNane, |ibraryNane);
if (null == resourceld) {
prefix = classpath resource prefix;
resour ceLoader = classpath resource | oader;
/'l these are shorthand for the prefix and resource
/1 loading facility specified in Section 2.6.1.2. They are
/1 not actual APl per se
resourceld = deriveResourceld(prefix, resourcelLoader,

resourceNane, |ibraryNane);
}
if (null !'=resourceld) {
resource = create the resource using the resourceld;
}
return resource;

function deriveResourceld(prefix, resourcelLoader,
resour ceNanme, |ibraryName) {
var |ocal ePrefix = getLocal ePrefix();
var resourceVersion = null;

Chapter 2 Request Processing Lifecycle 2-25

var libraryVersion = null;

var resourceld

if (null !'=1localePrefix) {

prefix = localePrefix + /" + prefix;
}
if (null '=libraryNane) {

var |ibraryPaths = resourcelLoader. get Resour cePat hs(
prefix + “/° + libraryNange);

if (null !'=libraryPaths & !libraryPaths.isEmpty()) {
libraryVersion = // execute the conment
/1 Look in the libraryPaths for versioned |libraries
/1 1f one or nore versioned libraries are found, take
/1 the one with the “highest” version nunber as the val ue
/1 of libraryVersion. If no versioned libraries
/1 are found, let libraryVersion remain null.

}

if (null !'=1libraryVersion) {
libraryName = libraryNanme + ‘/’ + libraryVersion

}

var resourcePaths = resourcelLoader. get Resour cePat hs(
prefix + /" + libraryName + ‘/’ + resourceNane);

if (null !'= resourcePaths && !resourcePaths.isEnpty()) {
resourceVersion = // execute the coment
/1 Look in the resourcePaths for versioned resources
// 1f one or nore versioned resources are found, take
/1 the one with the “highest” version nunber as the val ue
/1 of resourceVersion. If no versioned libraries
/1 are found, |let resourceVersion remain null

}
if (null !'= resourceVersion) {
resourceld = prefix + '/’ + libraryName + '/’ +
resourceNane + ‘/’ + resourceVersion;
}
el se {
resourceld = prefix + '/’ + libraryName + '/’ + resourceNaneg;
}
} // end of if (null != IibraryNane)
el se {

/1 libraryName == nul
var resourcePaths = resourcelLoader. get Resour cePat hs(
prefix + ‘/’ + resourceNane);

if (null !'= resourcePaths && !resourcePaths.isEnmpty()) {

[2-26 JavaServer Faces Specification « June 2009

2.6.2

resourceVersion = // execute the coment

/1 Look in the resourcePaths for versioned resources

// 1f one or nore versioned resources are found, take

/1 the one with the “highest” version nunber as the val ue
/1 of resourceVersion. If no versioned libraries

/1 are found, let resourceVersion remain null.

}
if (null !'= resourceVersion) {
resourceld = prefix + '/’ + resourceNanme + '/’ +
resour ceVer si on;
}
el se {
resourceld = prefix + '/’ + resourceNang;
}
} /1 end of else, when libraryName == nul |

return resourceld;

function getLocal ePrefix() {
var | ocal ePrefi x;
var appBundl eNane = facesCont ext. application. nessageBundl e;
if (null !'= appBundl eNane) {
var locale =
facesCont ext. appl i cation. vi ewHandl er. cal cul at eLocal e();
Resour ceBundl e appBundl e = Resour ceBundl e. get Bundl e(
appBundl eNane, |ocal e);
| ocal ePrefix = appBundl e. get St ri ng(Resour ceHandl er.
LOCALE_PREFI X) ;
}
/1 Any M ssingResour ceException instances that are encountered
/1 in the above code rmust be swallowed by this method, and null
/'l returned;
return | ocal ePrefix;

}
[P1-end]

Rendering Resources

Resources such as images, stylesheets and scripts use the resource handling mechanism as outlined in Section 2.6.1
“Packaging Resources”. So, for example:

<h: graphi cl mage name="Pl anets.gif” |ibrary="i mages”/>
<h: graphi cl mage val ue="#{resource['inmges: Pl anets.gif’]}"/>

Chapter 2 Request Processing Lifecycle 2-27

2.6.2.1

These entries render exactly the same markup. In addition to using the nane and | i brary attributes, stylesheet and
script resources can be “relocated” to other parts of the view. For example, we could specify that a script resource be
rendered within an HTML “head”, “body” or “form” element in the page.

Relocatable Resources

Relocatable resources are resources that can be told where to render themselves, and this rendered location may be
different than the resource tag placement in the view. For example, a portion of the view may be described in the view
declaration language as follows:

<f:view content Type="text/htm"/>
<h: head>
<neta http-equi v="Cont ent-Type" content="text/htm;
char set =i so- 8859-1" />
<title>Exanple View/title>

</ h: head>
<h: body>
<h: f or n>
<h: out put Scri pt name="aj ax.js” library="javax.faces”

target =" head”/ >

</ h: fornp
</ h: body>
</[f:view>

The <h: out put Scri pt > tag refers to the renderer, Scri pt Render er, that listens for Post AddToVi ewEvent event
types:

@.i st ener For (f acesEvent Cl ass=Post AddToVi ewEvent. cl ass,
sour ced ass=Ul Qut put .. cl ass)

public class ScriptRenderer extends Renderer inplenents
Conponent Syst enEvent Li stener {...

Refer to Section 3.4 “Event and Listener Model”. When the component for this resource is added to the view, the
Scri pt Renderer processEvent method adds the component to a facet (named by the t ar get attribute) under the
view root. using the Ul Vi ewRoot component resource methods as described in Section 4.1.19.3 “Methods”.

The <h:head> and <h:body> tags refer to the renderers HeadRenderer and BodyRenderer respectively. They are described
in the Standard HTML Renderkit documentation referred to in Section 8.6 “Standard HTML RenderKit Implementation”.
During the rendering phase, the encode methods for these renderers render the HTML “head” and “body” elements
respectively. Then they render all component resources under the facet child (named by t ar get) under the Ul Vi ewRoot
using the Ul Vi ewRoot component resource methods as described in Section 4.1.19.3 “Methods”.

Existing component libraries (with existing head and body components), that want to use this resource loading feature must
follow the rendering requirements described in Section 8.6 “Standard HTML RenderKit Implementation”.

|2-28 JavaServer Faces Specification « June 2009

2.6.2.2 Resource Rendering Using Annotations

Components and renderers may be declared as requiring a resource using the @Resour ceDependency annotation. The
implementation must scan for the presence of this annotation on the component that was added to the Li st of child
components. Check for the presence of the annotation on the renderer for this component (if there is a renderer for the
component). The annotation check must be done immediately after the component is added to the Li st. Refer to
Section 3.1.7 “Component Tree Manipulation”for detailed information.

Chapter 2 Request Processing Lifecycle 2-29

J2-30 JavaServer Faces Specification « June 2009

User Interface Component Model

A JSF user interface component is the basic building block for creating a JSF user interface. A particular component
represents a configurable and reusable element in the user interface, which may range in complexity from simple (such
as a button or text field) to compound (such as a tree control or table). Components can optionally be associated with
corresponding objects in the data model of an application, via value expressions.

JSF also supports user interface components with several additional helper APIs:

= Converters—Pluggable support class to convert the markup value of a component to and from the corresponding type
in the model tier.

= Events and Listeners—An event broadcast and listener registration model based on the design patterns of the
JavaBeans Specification, version 1.0.1.

= Validators—Pluggable support classes that can examine the local value of a component (as received in an incoming
request) and ensure that it conforms to the business rules enforced by each Validator. Error messages for validation
failures can be generated and sent back to the user during rendering.

The user interface for a particular page of a JSF-based web application is created by assembling the user interface
components for a particular request or response into a view. The view is a tree of classes that implement Ul Conrponent .
The components in the tree have parent-child relationships with other components, starting at the root element of the
tree, which must be an instance of Ul Vi ewRoot . Components in the tree can be anonymous or they can be given a
component identifier by the framework user. Components in the tree can be located based on component identifiers,
which must be unique within the scope of the nearest ancestor to the component that is a naming container. For complex
rendering scenarios, components can also be attached to other components as facets.

This chapter describes the basic architecture and APIs for user interface components and the supporting APIs.

3.1

UIComponent and UIComponentBase

The base abstract class for all user interface components is j avax. f aces. conponent . Ul Conponent . This class
defines the state information and behavioral contracts for all components through a Java programming language API,
which means that components are independent of a rendering technology such as JavaServer Pages (JSP). A standard set
of components (described in Chapter 4 “Standard User Interface Components”) that add specialized properties, attributes,
and behavior, is also provided as a set of concrete subclasses.

Component writers, tool providers, application developers, and JSF implementors can also create additional

Ul Corrponent implementations for use within a particular application. To assist such developers, a convenience
subclass, j avax. f aces. conponent . Ul Conponent Base, is provided as part of JSF. This class provides useful
default implementations of nearly every Ul Conponent method, allowing the component writer to focus on the unique
characteristics of a particular U Conponent implementation.

The following subsections define the key functional capabilities of JSF user interface components.

Chapter 3 User Interface Component Model 3-1

3.1.1

3.1.2

3.1.3

3.14

Component Identifiers

public String getld();

public void setld(String conponentld);

[N/T-start may-component-identifier] Every component may be named by a component identifier that must conform to
the following rules:

» They must start with a letter (as defined by the Character. i sLetter () method).

= Subsequent characters must be letters (as defined by the Character. i sLetter () method), digits as defined by
the Char acter.isDigit() method, dashes (‘-’), or underscores (°_’).

[P1-end] To minimize the size of responses generated by JavaServer Faces, it is recommended that component identifiers
be as short as possible.

If a component has been given an identifier, it must be unique in the namespace of the closest ancestor to that component
that is a Nam ngCont ai ner (if any).

Component Type

While not a property of Ul Conponent , the conponent -t ype is an important piece of data related to each
Ul Conrponent subclass that allows the Appl i cat i on instance to create new instances of Ul Conponent subclasses
with that type. Please see Section 7.1.11 “Object Factories” for more on conponent -t ype.

Component types starting with “javax.faces.” are reserved for use by the JSF specification.

Component Family

public String getFam ly();

Each standard user interface component class has a standard value for the component family, which is used to look up
renderers associated with this component. Subclasses of a generic UIComponent class will generally inherit this property
from its superclass, so that renderers who only expect the superclass will still be able to process specialized subclasses.

Component families starting with “javax.faces.” are reserved for use by the JSF specification.

ValueExpression properties

Properties and attributes of standard concrete component classes may be value expression enabled. This means that,
rather than specifying a literal value as the parameter to a property or attribute setter, the caller instead associates a

Val ueExpr essi on (see Section 5.8.3 “ValueBinding”) whose get Val ue() method must be called (by the property
getter) to return the actual property value to be returned if no value has been set via the corresponding property setter. If
a property or attribute value has been set, that value must be returned by the property getter (shadowing any associated
value binding expression for this property).

| 3-2 JavaServer Faces Specification < June 2009

3.1.5

Value binding expressions are managed with the following method calls:

publ i ¢ Val ueExpressi on get Val ueExpressi on(Stri ng nane);

public void setVal ueExpressi on(String nane, Val ueExpressi on
expressi on);

where nane is the name of the attribute or property for which to establish the value expression. [P1-start
setValueExpression rules] The implementation of set Val ueExpr essi on must detemine if the expression is a literal by
calling Val ueExpressi on. i sLiteral Text() on the expressi on argument. If the expressi on argument is
literal text, then Val ueExpr essi on. get Val ue() must be called on the expr essi on argument. The result must be
used as the val ue argument, along with the name argument to this component’s get At t ri but es() . put (nane,

val ue) method call. [P1-end] [P1-start which properties are value expression enabled] For the standard component
classes defined by this specification, all attributes, and all properties other than i d and par ent, are value expression
enabled. [P1-end]

In previous versions of this specification, this concept was called “value binding”. Methods and classes referring to this
concept are deprecated, but remain implemented to preserve backwards compatibility.

publ i ¢ Val ueBi ndi ng get Val ueBi ndi ng(Stri ng nane);

public void setVal ueBi ndi ng(String name, Val ueBi ndi ng bi ndi ng);

Please consult the javadoc for these methods to learn how they are implemented in terms of the new “value expression”
concept.

Component Bindings

A component binding is a special value expression that can be used to facilitate “wiring up” a component instance to a
corresponding property of a JavaBean that is associated with the page, and wants to manipulate component instances
programatically. It is established by calling set Val ueExpr essi on() (see Section 3.1.4 “ValueExpression
properties”) with the special property name bi ndi ng.

The specified Val ueExpr essi on must point to a read-write JavaBeans property of type Ul Conponent (or
appropriate subclass). Such a component binding is used at two different times during the processing of a Faces Request:

= [P3-start how a component binding is used from a JSP page] When a component instance is first created (typically by
virtue of being referenced by a Ul Conponent ELTag in a JSP page), the JSF implementation will retrieve the
Val ueExpr essi on for the name bi ndi ng, and call get Val ue() on it. If this call returns a non-null
Ul Conponent value (because the JavaBean programmatically instantiated and configured a component already),
that instance will be added to the component tree that is being created. If the call returns nul | , a new component
instance will be created, added to the component tree, and set Val ue() will be called on the Val ueExpr essi on
(which will cause the property on the JavaBean to be set to the newly created component instance). [P3-end]

= [Pl-start how a component binding is used when restoring the tree]When a component tree is recreated during the
Restore View phase of the request processing lifecycle, for each component that has a Val ueExpr essi on
associated with the name “binding”, set Val ue() will be called on it, passing the recreated component instance.
[P1-end]

Component bindings are often used in conjunction with JavaBeans that are dynamically instantiated via the Managed
Bean Creation facility (see Section 5.8.1 “VariableResolver and the Default VariableResolver™). 1t is strongly
recommend that application developers place managed beans that are pointed at by component binding expressions in
“request” scope. This is because placing it in session or application scope would require thread-safety, since

Ul Conponent instances depends on running inside of a single thread. There are also potentially negative impacts on
memory management when placing a component binding in “session” scope.

Chapter 3 User Interface Component Model 3-3

3.1.6

3.1.7

Client Identifiers

Client identifiers are used by JSF implementations, as they decode and encode components, for any occasion when the
component must have a client side name. Some examples of such an occasion are:

= to name request parameters for a subsequent request from the JSF-generated page.
= to serve as anchors for client side scripting code.
= to serve as anchors for client side accessibility labels.

public String getdientld(FacesContext context);
protected String getContainerdientld(FacesContext context);

The client identifier is derived from the component identifier (or the result of calling

Ul Vi ewRoot . cr eat eUni quel d() if there is not one), and the client identifier of the closest parent component that
is a Nam ngCont ai ner according to the algorithm specified in the javadoc for Ul Conponent . getClientld().
The Render er associated with this component, if any, will then be asked to convert this client identifier to a form
appropriate for sending to the client. The value returned from this method must be the same throughout the lifetime of
the component instance unless set | d() is called, in which case it will be recalculated by the next call to

getCientld().

Component Tree Manipulation

publi ¢ U Conponent getParent();

public void setParent (U Conponent parent);

Components that have been added as children of another component can identify the parent by calling the get Par ent
method. For the root node component of a component tree, or any component that is not part of a component tree,

get Par ent will return nul | . In some special cases, such as transient components, it is possible that a component in
the tree will return nul | from getParent(). The set Par ent () method should only be called by the Li St instance
returned by calling the get Chi | dr en() method, or the Map instance returned by calling the get Facet s() method,
when child components or facets are being added, removed, or replaced.

public List<U Conponent > get Children();

Return a mutable Li St that contains all of the child Ul Conponent s for this component instance. [P1-start
requirements of UIComponent.getChildren()] The returned Li st implementation must support all of the required and
optional methods of the Li st interface, as well as update the parent property of children that are added and removed, as
described in the Javadocs for this method. [P1-end] Note that the add() methods have a special requirement to cause
the Post AddToVi ewEvent method to be fired, as well as the processing of the Resour ceDependency annotation.
See the javadocs for get Chi | dren() for details.

public int getChildCount();

A convenience method to return the number of child components for this component. [P2-start
UIComponent.getChildCount requirements.] If there are no children, this method must return 0. The method must not
cause the creation of a child component list, so it is preferred over calling get Chi | dren() . si ze() when there are
no children. [P2-end]

| 3-4 JavaServer Faces Specification < June 2009

3.1.8

Component Tree Navigation

publi ¢ U Conponent findConponent(String expr);

Search for and return the UIComponent with an i d that matches the specified search expression (if any), according to
the algorithm described in the Javadocs for this method.

public Iterator<U Conponent > get Facet sAndChi | dren();

Return an immutable | t er at or over all of the facets associated with this component (in an undetermined order),
followed by all the child components associated with this component (in the order they would be returned by
get Chil dren())..

publ i ¢ bool ean i nvokeOnConponent (FacesCont ext context, String
clientld, ContextcCallback callback) throws FacesException;

Starting at t hi S component in the view, search for the UIComponent whose get Cl i ent | d() method returns a String
that exactly matches the argument cl i ent | d using the algorithm specified in the Javadocs for this method. If such a
UlIComponent is found, call the i nvokeCont ext Cal | back() method on the argument cal | back passing the
current FacesCont ext and the found UIComponent. Upon normal return from the callback, return t r ue to the caller.
If the callback throws an exception, it must be wrapped inside of a FacesExcept i on and re-thrown. If no such
UIComponent is found, return f al se to the caller.

Special consideration should be given to the implementation of i nvokeOnConponent () for UIComponent classes
that handle iteration, such as Ul Dat a. Iterating components manipulate their own internal state to handle iteration, and
doing so alters the clientlds of components nested within the iterating component. Implementations of

i nvokeOnConponent () must guarantee that any state present in the component or children is restored before
returning. Please see the Javadocs for Ul Dat a. i nvokeOnConponent () for details.

The Cont ext Cal | back interface is specified as follows..

public interface ContextCallback {
public void i nvokeCont ext Cal | back(FacesCont ext context,
U Conponent target);

Please consult the Javadocs for more details on this interface.

public static U Conponent getCurrent Conponent (FacesCont ext
context);

Returns the Ul Conponent instance that is currently being processed.

public static U Conponent
get Curr ent Conposi t eConponent (FacesCont ext context);

Chapter 3 User Interface Component Model 3-5

3.1.9

Returns the closest ancestor component relative to get Cur r ent Conponent that is a composite component, or nul | if
no such component is exists.

publi c bool ean visitTree(VisitContext context,
Vi sitCal | back cal | back);

Uses the visit API introduced in version 2 of the specification to perform a flexible and customizable visit of the tree
from this instance and its children. Please see the package description for the package
j avax. f aces. conponent . vi si t for the normative specification.

Facet Management

JavaServer Faces supports the traditional model of composing complex components out of simple components via
parent-child relationships that organize the entire set of components into a tree, as described in Section 3.1.7
“Component Tree Manipulation”. However, an additional useful facility is the ability to define particular subordinate
components that have a specific role with respect to the owning component, which is typically independent of the parent-
child relationship. An example might be a “data grid” control, where the children represent the columns to be rendered
in the grid. It is useful to be able to identify a component that represents the column header and/or footer, separate from
the usual child collection that represents the column data.

To meet this requirement, JavaServer Faces components offer support for facets, which represent a named collection of
subordinate (but non-child) components that are related to the current component by virtue of a unique facet name that
represents the role that particular component plays. Although facets are not part of the parent-child tree, they participate
in request processing lifecycle methods, as described in Section 3.1.14 “Lifecycle Management Methods”.

public Map<String, U Conponent> get Facets();

Return a mutable Map representing the facets of this UIComponent, keyed by the facet name.

publi ¢ U Conponent getFacet(String nane);

A convenience method to return a facet value, if it exists, or nul | otherwise. If the requested facet does not exist, no
facets Map must not be created, so it is preferred over calling get Facet s() . get () when there are no Facet s.

For easy use of components that use facets, component authors may include type-safe getter and setter methods that
correspond to each named facet that is supported by that component class. For example, a component that supports a
header facet of type Ul Header should have methods with signatures and functionality as follows:

public U Header getHeader () {
return ((U Header) getFacet(“header”);

}

public void set Header (U Header header) {
get Facet s(). put (“header”, header);

}

| 3-6 JavaServer Faces Specification < June 2009

3.1.10

3.1.11

Managing Component Behavior

Ul Conponent Base provides default implementations for the methods from the

j avax. f aces. conponent . behavi or. Behavi or Hol der interface. U Conponent Base does not implement
the j avax. f aces. conmponent . behavi or. Behavi or Hol der interface, but it provides the default
implementations to simplify subclass implemenations. Refer to Section 3.7 “Component Behavior Model” for more
information.

public void addBehavi or (String event Name, Behavi or behavi or)

This method attaches a Behavi or to the component for the specified event Name. The event Name must be one
of the values in the Col | ecti on returned from get Event Nanes(). For example, it may be desired to have some
behavior defined when a “click” event occurs. The behavior could be some client side behavior in the form of a script
executing, or a server side listener executing.

public Coll ection<String> get Event Nanes()

Returns the logical event names that can be associated with behavior for the component.

public Map<String, List<Behavior>> getBehaviors()

Returns a Map defining the association of events and behaviors. They keys in the Map are event names.

public String getDefault Event Name()

Returns the default event name (if any) for the component.

Generic Attributes

public Map<String, Object> getAttributes();

The render-independent characteristics of components are generally represented as JavaBean component properties with
getter and setter methods (see Section 3.1.12 “Render-Independent Properties™). In addition, components may also be
associated with generic attributes that are defined outside the component implementation class. Typical uses of generic
attributes include:

= Specification of render-dependent characteristics, for use by specific Render er s.
= General purpose association of application-specific objects with components.
The attributes for a component may be of any Java programming language object type, and are keyed by attribute name

(a String). However, see Section 7.7.2 “State Saving Alternatives and Implications” for implications of your application’s
choice of state saving method on the classes used to implement attribute values.

Attribute names that begin with j avax. f aces are reserved for use by the JSF specification. Names that begin with
j avax are reserved for definition through the Java Community Process. Implementations are not allowed to define
names that begin with j avax.

[P1-start attribute property transparency rules] The Map returned by get Att ri but es() must also support attribute-
property transparency, which operates as follows:

Chapter 3 User Interface Component Model 3-7

3.1.11.1

= When the get () method is called, if the specified attribute name matches the name of a readable JavaBeans
property on the component implementation class, the value returned will be acquired by calling the appropriate
property getter method, and wrapping Java primitive values (such as int) in their corresponding wrapper classes (such
as j ava. | ang. | nt eger) if necessary. If the specified attribute name does not match the name of a readable
JavaBeans property on the component implementation class, consult the internal data-structure to in which generic
attributes are stored. If no entry exists in the internal data-structure, see if there is a Val ueExpr essi on for this
attribute name by calling get Val ueExpr essi on(), passing the attribute name as the key. If a
Val ueExpr essi on exists, call get Val ue() on it, returning the result. If an ELExcept i on is thrown wrap it in
a FacesExcepti on and re-throw it.

= When the put () method is called, if the specified attribute name matches the name of a writable JavaBeans property
on the component implementation class, the appropriate property setter method will be called. If the specified
attribute name does not match the name of a writable JavaBeans property, simply put the value in the data-structure
for generic attributes.

= When the r enove() method is called, if the specified attribute name matches the name of a JavaBeans property on
the component, an | | | egal Ar gunent Except i on must be thrown.

= When the cont ai nsKey () method is called, if the specified attribute name matches the name of a JavaBeans
property, return f al se. Otherwise, return t r ue if and only if the specified attribute name exists in the internal data-
structure for the generic attributes.

The Map returned by get At t ri but es() must also conform to the entire contract for the Map interface. [P1-end]

Special Attributes

UlComponent Constants

public static final String CURRENT_COVPONENT =
"j avax. f aces. conmponent . CURRENT_COVPONENT" ;

This is used as a key in the FacesCont ext attributes Map to indicate the component that is currently being processed.

public static final String CURRENT_COWVPOSI TE_COVPONENT =
"j avax. f aces. conponent . CURRENT_COMPCSI TE_COVPONENT" ;

This is used as a key in the FacesCont ext attributes Map to indicate the composite component that is currently being
processed.

public static final String BEANI NFO KEY =
"javax. faces. conponent . BEANI NFO_KEY";

This is a key in the component attributes Map whose value is a j ava. beans. Beanl nf o describing the composite
component.

public static final String FACETS KEY =
"j avax. faces. conmponent . FACETS _KEY";

| 3-8 JavaServer Faces Specification < June 2009

3.1.12

This is a key in the composite component BeanDescriptor whose value is a Map<PropertyDescriptor> that contains
meta-information for the declared facets for the composite component.

public static final String COVPCSI TE_COVPONENT_TYPE_KEY =
"j avax. f aces. conponent . COVPOSI TE_COVPONENT_TYPE";

This is a key in the composite component BeanDescriptor whose value is a Val ueExpr essi on that evaluates to the
conponent -t ype of the composite component root.

public static final String COVPOSI TE_FACET_NAME =
"javax. faces. conponent . COMPOSI TE_FACET_NAME";

This is a key in the Map<PropertyDescriptor> that is returned by using the key FACETS_KEY. The value of this
constant is also used as the key in the Map returned from get Facet s(). In this case, the value of this key is the
facet (the Ul Panel) that is the parent of all the components in the conposi te i npl enent ati on section of the
composite component VDL file.

Refer to the j avax. f aces. conponent . U Conponent Javadocs for more detailed information.

Render-Independent Properties

The render-independent characteristics of a user interface component are represented as JavaBean component properties,
following JavaBeans naming conventions. Specifically, the method names of the getter and/or setter methods are
determined using standard JavaBeans component introspection rules, as defined by j ava. beans. | ntr ospect or.
The render-independent properties supported by all U Conponent s are described in the following table:

Name Access Type Description

id RW String The component identifier, as described in Section 3.1.1
“Component Identifiers”.

par ent RW Ul Conponent The parent component for which this component is a child or a
facet.

render ed RW bool ean A flag that, if set to t r ue, indicates that this component should be

render er Type

render sChi | dr
en

transi ent

processed during all phases of the request processing lifecycle. The
default value is “true”.

RW String Identifier of the Render er instance (from the set of Render er
instances supported by the Render Ki t associated with the
component tree we are processing. If this property is set, several
operations during the request processing lifecycle (such as decode
and the encodeXxx family of methods) will be delegated to a
Render er instance of this type. If this property is not set, the
component must implement these methods directly.

RO bool ean A flag that, if set to t r ue, indicates that this component manages
the rendering of all of its children components (so the JSF
implementation should not attempt to render them). The default
implementation in Ul Conponent Base delegates this setting to
the associated Render er, if any, and returns f al se otherwise.

RW boolean A flag that, if set to t r ue, indicates that this component must not
be included in the state of the component tree. The default
implementation in Ul Conponent Base returns f al se for this

property.

Chapter 3 User Interface Component Model 3-9

3.1.13

The method names for the render-independent property getters and setters must conform to the design patterns in the
JavaBeans specification. See Section 7.7.2 “State Saving Alternatives and Implications” for implications of your
application’s choice of state saving method on the classes used to implement property values.

Component Specialization Methods

The methods described in this section are called by the JSF implementation during the various phases of the request
processing lifecycle, and may be overridden in a concrete subclass to implement specialized behavior for this component.

publi ¢ bool ean broadcast (FacesEvent event) throws
Abor t Processi ngExcepti on;

The br oadcast () method is called during the common event processing (see Section 2.3 “Common Event
Processing”™) at the end of several request processing lifecycle phases. For more information about the event and listener
model, see Section 3.4 “Event and Listener Model”. Note that it is not necessary to override this method to support
additional event types.

public void decode(FacesContext context);

This method is called during the Apply Request Values phase of the request processing lifecycle, and has the
responsibility of extracting a new local value for this component from an incoming request. The default implementation
in Ul Conponent Base delegates to a corresponding Render er, if the r ender er Type property is set, and does
nothing otherwise.

Generally, component writers will choose to delegate decoding and encoding to a corresponding Render er by setting
the r ender er Type property (which means the default behavior described above is adequate).

public void encodeAl | (FacesContext context) throws | OException
public voi d encodeBegi n(FacesCont ext context) throws | OException;

public void encodeChil dren(FacesContext context) throws
| OExcepti on;

public void encodeEnd(FacesContext context) throws | OException;

These methods are called during the Render Response phase of the request processing lifecycle. encodeAl | () will
cause this component and all its children and facets that return t r ue from i SRender ed() to be rendered, regardless
of the value of the get Render sChi | dr en() return value. encodeBegi n(), encodeChi | dren(), and
encodeEnd() have the responsibility of creating the response data for the beginning of this component, this
component’s children (only called if the r ender sChi | dr en property of this component is t r ue), and the ending of
this component, respectively. Typically, this will involve generating markup for the output technology being supported,
such as creating an HTML <i nput > element for a Ul | nput component. For clients that support it, the encode methods
might also generate client-side scripting code (such as JavaScript), and/or stylesheets (such as CSS). The default
implementations in Ul Conponent Base encodeBegi n() and encodeEnd() delegate to a corresponding
Render er, if the r ender er Type property is t r ue, and do nothing otherwise. [P 1-start-comp-special]The default
implementation in UIComponentBase encodeChi | dren() must iterate over its children and call encodeAl | ()
for each child component. encodeBegi n() must publish a Pr eRender Conponent Event . [Pl-end]

Generally, component writers will choose to delegate encoding to a corresponding Render er, by setting the
render er Type property (which means the default behavior described above is adequate).

public void queueEvent (FacesEvent event);

| 3-10 JavaServer Faces Specification « June 2009

3.1.14

Enqueue the specified event for broadcast at the end of the current request processing lifecycle phase. Default behavior
is to delegate this to the queueEvent () of the parent component, normally resulting in broadcast via the default
behavior in the Ul Vi ewRoot lifecycle methods.

The component author can override any of the above methods to customize the behavior of their component.

Lifecycle Management Methods

The following methods are called by the various phases of the request processing lifecycle, and implement a recursive
tree walk of the components in a component tree, calling the component specialization methods described above for each
component. These methods are not generally overridden by component writers, but doing so may be useful for some
advanced component implementations. See the javadocs for detailed information on these methods

In order to support the “component” implicit object (See Section 5.6.2.1 “Implicit Object ELResolver for Facelets and
Programmatic Access”), the following methods have been added to Ul Conponent

protected voi d pushConponent TOEL(FacesCont ext context);
protected voi d popConmponent Fr onEL(FacesCont ext cont ext)

pushConponent TOEL() and popConponent Fr onEL() must be called inside each of the lifecycle management
methods in this section as specified in the javadoc for that method.

public void processRestoreStat e(FacesCont ext context, Object
state);

Perform the component tree processing required by the Restore View phase of the request processing lifecycle for all
facets of this component, all children of this component, and this component itself.

public void processDecodes(FacesCont ext context);

Perform the component tree processing required by the Apply Request Values phase of the request processing lifecycle
for all facets of this component, all children of this component, and this component itself

public void processVal i dators(FacesContext context);

Perform the component tree processing required by the Process Validations phase of the request processing lifecycle for
all facets of this component, all children of this component, and this component itself.

public void processUpdat es(FacesCont ext context);

Perform the component tree processing required by the Update Model Values phase of the request processing lifecycle
for all facets of this component, all children of this component, and this component itself.

public void processSaveSt at e(FacesCont ext context);

Perform the component tree processing required by the state saving portion of the Render Response phase of the request
processing lifecycle for all facets of this component, all children of this component, and this component itself.

Chapter 3 User Interface Component Model 3-11

3.1.15

Utility Methods

prot ect ed FacesCont ext get FacesContext();

Return the FacesContext instance for the current request.

prot ected Renderer getRenderer(FacesContext context);

Return the Render er that is associated this Ul Conrponent , if any, based on the values of the f ami | y and
render er Type properties currently stored as instance data on the Ul Conponent .

protected voi d addFacesLi st ener (FacesLi stener |istener);

protected voi d renoveFacesLi st ener (FacesLi stener |istener);

These methods are used to register and deregister an event listener. They should be called only by a public
addXxxListener() method on the component implementation class, which provides typesafe listener registration.

public Map<String, String> get ResourceBundl eMap();

Return a Map of the ResourceBundle for this conponent. Please consult the Javadocs for
nmore information.

3.2

3.2.1

Component Behavioral Interfaces

In addition to extending Ul Conponent , component classes may also implement one or more of the behavioral
interfaces described below. Components that implement these interfaces must provide the corresponding method
signatures and implement the described functionality.

ActionSource

The Act i onSour ce interface defines a way for a component to indicate that wishes to be a source of Act i onEvent
events, including the ability invoke application actions (see Section 7.3 “Application Actions”) via the default
Act i onLi st ener facility (see Section 7.1.1 “ActionListener Property”).

| 312 JavaServer Faces Specification « June 2009

3.2.1.1

3.2.1.2

3.2.1.3

Properties

The following render-independent properties are added by the Act i onSour ce interface:

Name Access Type

Description

action RW Met hodBi ndi
ng

actionListener RW MethodBinding

immediate RW boolean

DEPRECATED A Met hodBi ndi ng (see
Section 5.8.4 “MethodBinding”) that must (if
non-nul |) point at an action method (see
Section 7.3 “Application Actions”). The
specified method will be called during the
Apply Request Values or Invoke Application
phase of the request processing lifecycle, as
described in Section 2.2.5 “Invoke
Application”. This method is replaced by the
act i onExpr essi on property on

Act i onSource2. See the javadocs for the
backwards compatibility implementation
strategy.

DEPRECATED A Met hodBi ndi ng (see
Section 5.8.4 “MethodBinding”) that (if non-
nul |) must point at a method accepting an
Act i onEvent , with a return type of voi d.
Any Act i onEvent that is sent by this

Act i onSour ce will be passed to this method
along with the pr ocessAct i on() method of
any registered Act i onLi st eners, in either
Apply Request Values or Invoke Application
phase, depending upon the state of the

i mredi at e property. See the javadocs for the
backwards compatibility implementation
strategy.

A flag indicating that the default

Act i onLi st ener should execute
immediately (that is, during the Apply Request
Values phase of the request processing
lifecycle, instead of waiting for Invoke
Application phase). The default value of this
property must be f al se.

Methods

Act i onSour ce adds no new processing methods.

Events

A component implementing Act i onSour ce is a source of Act i onEvent events. There are three important moments

in the lifetime of an Act i onEvent :

= when an the event is created

= when the event is queued for later processing

= when the listeners for the event are notified

Chapter 3 User Interface Component Model

3-13

3.2.2

3.2.2.1

3.2.2.2

3.2.2.3

Act i onEvent creation occurs when the system detects that the component implementing Act i onSour ce has been
activated. For example, a button has been pressed. This happens when the decode() processing of the Apply Request
Values phase of the request processing lifecycle detects that the corresponding user interface control was activated.

Act i onEvent queueing occurs immediately after the event is created.

Event listeners that have registered an interest in Act i onEvent s fired by this component (see below) are notified at the
end of the Apply Request Values or Invoke Application phase, depending upon the immediate property of the originating
Ul Conmand.

Act i onSour ce includes the following methods to register and deregister Act i onLi st ener instances interested in
these events. See Section 3.4 “Event and Listener Model” for more details on the event and listener model provided by
JSF.

public void addActi onLi stener (ActionListener |istener);

public void renoveActionLi stener(ActionListener |istener);

In addition to manually registered listeners, the JSF implementation provides a default Act i onLi st ener that will
process Act i onEvent events during the Apply Request Values or Invoke Application phases of the request processing
lifecycle. See Section 2.2.5 “Invoke Application” for more information.

ActionSource?

The Act i onSour ce2 interface extends Act i onSour ce and provides a JavaBeans property analogous to the act i on
property on Act i onSour ce. This allows the Act i onSour ce concept to leverage the new Unified EL API.

Properties

The following render-independent properties are added by the Act i onSour ce interface:

Name Access Type Description

acti onExpres RW javax.el . Me A Met hodExpr essi on (see Section 5.8.4

sion t hodExpress “MethodBinding”) that must (if non-nul |)
i on point at an action method (see Section 7.3

“Application Actions”). The specified method
will be called during the Apply Request Values
or Invoke Application phase of the request
processing lifecycle, as described in

Section 2.2.5 “Invoke Application”.

Methods

Act i onSour ce2 adds no new processing methods.

Events

Act i onSour ce2 adds no new events.

| 3-14 JavaServer Faces Specification * June 2009

3.2.3

3.2.4

3.24.1

3.24.2

NamingContainer

Nam ngCont ai ner is a marker interface. Components that implement Nam ngCont ai ner have the property that,
for all of their children that have non-nul | component identifiers, all of those identifiers are unique. This property is
enforced by the r ender Vi ew() method on Vi ewHandl er. In JSP based applications, it is also enforced by the

Ul Conponent ELTag. Since this is just a marker interface, there are no properties, methods, or events. Among the
standard components, Ul For mand Ul Dat a implement Nam ngCont ai ner. See Section 4.1.4 “UIForm” and Section
4.1.3.3 “UlData” for details of how the NamingContainer concept is used in these two cases.

Nam ngCont ai ner defines a public static final character constant, SEPARATOR_CHAR, that is used to separate
components of client identifiers, as well as the components of search expressions used by the f i ndConponent ()
method see (Section 3.1.8 “Component Tree Navigation”). The value of this constant must be a colon character (“:”).

Use of this separator character in client identifiers rendered by Render er s can cause problems with CSS stylesheets
that attach styles to a particular client identifier. For the Standard HTML RenderKit, this issue can be worked around by
using the st yl e attribute to specify CSS style values directly, or the st yl eCl ass attribute to select CSS styles by
class rather than by identifier.

StateHolder

The St at eHol der interface is implemented by Ul Conponent , Convert er, FacesLi st ener, and Val i dat or
classes that need to save their state between requests. Ul Conponent implements this interface to denote that
components have state that must be saved and restored between requests.

Properties

The following render-independent properties are added by the St at eHol der interface:

Name Access Type Description

transient RW bool ean A flag indicating whether this instance has
decided to opt out of having its state
information saved and restored. The default
value for all standard component, converter,
and validator classes that implement
St at eHol der must be f al se.

Methods

Any class implementing St at eHol der must implement both the saveSt at e() and r est or eSt at e() methods,
since these two methods have a tightly coupled contract between themselves. In other words, if there is an inheritance
hierarchy, it is not permissible to have the saveSt at e() and r est or eSt at e() methods reside at different levels of
the hierarchy.

public Object saveState(FacesContext context);
public void restoreState(FacesContext context, Object state)
throws | CExcepti on;

Gets or restores the state of the instance as a Seri al i zabl e Obj ect .

Chapter 3 User Interface Component Model 3-15

3.243

3.2.5

3.2.6

3.2.6.1

If the class that implements this interface has references to Objects which also implement St at eHol der (such as a
U Component with a converter, event listeners, and/or validators) these methods must call the saveSt at e() or
restoreState() method on all those instances as well.

Any class implementing St at eHol der must have a public no-args constructor.
If the state saving method is server, these methods may not be called.

If the class that implements this interface has references to Objects which do not implement St at eHol der, these
methods must ensure that the references are preserved. For example, consider class MySpeci al Conponent , which
implements St at eHol der, and keeps a reference to a helper class, MySpeci al Conmponent Hel per, which does not
implement St at eHol der. MySpeci al Conponent . saveSt at e() must save enough information about

My Speci al Conponent Hel per, so that when MySpeci al Conponent . rest oreSt at e() is called, the reference
to MySpeci al Conponent Hel per can be restored. The return from saveSt at e() must be Seri al i zabl e.

Since all of the standard user interface components listed in Chapter 4 “Standard User Interface Components” extend
from Ul Conponent , they all implement the St at eHol der interface. In addition, the standard Convert er and
Val i dat or classes that require state to be saved and restored also implement St at eHol der .

Events

St at eHol der does not originate any standard events.

PartialStateHolder

ValueHolder

Val ueHol der is an interface that may be implemented by any concrete Ul Conponent that wishes to support a local
value, as well as access data in the model tier via a val ue expr essi on, and support conversion between St ri ng
and the model tier data's native data type.

Properties

The following render-independent properties are added by the Val ueHol der interface:

Name Access Type Description

converter RW Converter The Convert er (if any) that is registered for this
UIComponent.

val ue RW oj ect First consult the local value property of this

component. If non-nul | return it. If the local value
property is nul | , see if we have a

Val ueExpr essi on for the value property. If so,
return the result of evaluating the property,
otherwise return nul | .

localValue RO Object allows any value set by calling set Val ue() to be
returned, without potentially evaluating a
Val ueExpr essi on the way that get Val ue()
will do

| 3-16 JavaServer Faces Specification « June 2009

Like nearly all component properties, the val ue property may have a value binding expression (see Section 3.1.4
“ValueExpression properties”) associated with it. If present (and if there is no val ue set directly on this component),
such an expression is utilized to retrieve a value dynamically from a model tier object during Render Response Phase of
the request processing lifecycle. In addition, for input components, the value expression is used during Update Model
Values phase (on the subsequent request) to push the possibly updated component value back to the model tier object.

The Convert er property is used to allow the component to know how to convert the model type from the St ri ng
format provided by the Servlet API to the proper type in the model tier.

The Convert er property must be inspected for the presence of Resour ceDependency and
Resour ceDependenci es annotations as described in the Javadocs for the set Convert er method.

3.2.6.2 Methods

ValueHolder adds no methods.

3.2.6.3 Events

Val ueHol der does not originate any standard events.

3.2.7 EditableValueHolder

The Edi t abl eVal ueHol der interface (extends Val ueHol der, see Section 3.2.6 “ValueHolder”) describes
additional features supported by editable components, including Val ueChangeEvent s and Val i dat or s.

3.2.7.1 Properties

The following render-independent properties are added by the Edi t abl eVal ueHol der interface:

Name Access Type Description

immediate RW boolean Flag indicating that conversion and validation of this
component’s value should occur during Apply
Request Values phase instead of Process Validations

phase.
localValueS RW boolean Flag indicating whether the val ue property has
et been set.
required RW boolean Is the user required to provide a non-empty value

for this component? Default value must be f al se.

submittedVa RW oj ect The submitted, unconverted, value of this

lue component. This property should only be set by the
decode() method of this component, or its
corresponding Renderer, or by the validate method
of this component. This property should only be
read by the validate() method of this component.

Chapter 3 User Interface Component Model 3-17

3.2.7.2

3.2.7.3

Name Access Type Description

valid RW boolean A flag indicating whether the local value of this
component is valid (that is, no conversion error or
validation error has occurred).

validator RW MethodBinding DEPRECATED A Met hodBi ndi ng that (if not
null) must point at a method accepting a
FacesCont ext and a Ul | nput, with a return
type of voi d. This method will be called during
Process Validations phase, after any validators that
are externally registered. See the javadocs for the
backwards compatibility strategy.

valueChang RW MethodBinding DEPRECATED A MethodBinding that (if not null)
eListener must point at a method that accepts a
Val ueChangeEvent , with a return type of voi d.
The specified method will be called during the
Process Validations phase of the request processing
lifecycle, after any externally registered
Val ueChangelLi st eners. See the javadocs for
the backwards compatibility strategy.

Methods

The following methods support the validation functionality performed during the Process Validations phase of the
request processing lifecycle:

public void addValidator(Validator validator);

public void renoveValidator(Validator validator);

The addVal i dat or () and renpveVal i dat or () methods are used to register and deregister additional external
Val i dat or instances that will be used to perform correctness checks on the local value of this component.

If the val i dat or property is not null, the method it points at must be called by the pr ocessVal i dati ons()
method, after the val i dat e() method of all registered Val i dat or s is called.

The addVal i dat or ’s Val i dat or argument must be inspected for the presense of the Resour ceDependency and
Resour ceDependenci es annotations as described in the Javadocs for the addVal i dat or method.

Events

Edi t abl eVal ueHol der is a source of Val ueChangeEvent, PreVal i dat eEvent and Post Val i dat e events.
These are emitted during calls to val i dat e(), which happens during the Process Validations phase of the request
processing lifecycle. The Pr eVal i dat eEvent is published immediately before the component gets validated.

Post Val i dat e is published after validation has occurred, regardless if the validation was successful or not. If the
validation for the component did pass successfully, and the previous value of this component differs from the current
value, the Val ueChangeEvent is published. The following methods allow listeners to register and deregister for
Val ueChangeEvents. See Section 3.4 “Event and Listener Model” for more details on the event and listener model
provided by JSF.

public voi d addVal ueChangelLi st ener (Val ueChangelLi stener |istener);

public void renpveVal ueChangelLi st ener (Val ueChangeli st ener
listener);

| 3-18 JavaServer Faces Specification « June 2009

3.2.8

3.2.8.1

3.2.8.2

3.2.8.3

3.2.9

In addition to the above listener registration methods, If the val ueChangeli st ener property is not nul | , the
method it points at must be called by the br oadcast () method, after the pr ocessVal ueChange() method of all
registered Val ueChangelLi st ener s is called.

SystemEventListenerHolder
Classes that implement this interface agree to maintain a list of Syst emEvent Li st ener instances for each kind of

Syst enEvent they can generate. This interface enables arbitrary Objects to act as the source for Syst enEvent
instances.

Properties

This interface contains no JavaBeans properties

Methods

The following method gives the JSF runtime access to the list of listeners stored by this instance.:

public List<FaceslLifecycl elLi st ener>
get Li st ener sFor Event d ass(C ass<? extends SystenEvent >
facesEvent O ass) ;

During the processing for Appl i cati on. publ i shEvent (), if the sour ce argument to that method implements
Syst enEvent Li st ener Hol der, the get Li st ener sFor Event Cl ass() method is invoked on it, and each
listener in the list is given an opportunity to process the event, as specified in the javadocs for

Application. publishEvent ().

Events

While the class that implements Syst enEvent Li st ener Hol der is indeed a source of events, it is a call to
Application. publishEvent () that causes the event to actually be emitted. In the interest of maximum flexibility,
this interface does not define how listeners are added, removed, or stored. See Section 3.4 “Event and Listener Model”
for more details on the event and listener model provided by JSF.

ClientBehaviorHolder

[P1-start-addBehavior] Components must implement the Cl i ent Behavi or Hol der interface to add the ability for
attaching Cl i ent Behavi or instances (see Section 3.7 “Component Behavior Model””). Components that extend
UIComponentBase only need to implement the getEventNames() method and specify "implements
ClientBehaviorHolder". UIComponentBase provides base implementations for all other methods. [P1-end] The concrete
HTML component classes that come with JSF implement the Cl i ent Behavi or Hol der interface.

public void addC i entBehavior(String event Nane, C i entBehavior
behavi or);

Chapter 3 User Interface Component Model 3-19

Attach a O i ent Behavi or to a component implementing this Cl i ent Behavi or Hol der interface for the specified
event. A default implementation of this method is provided in Ul Conmponent Base to make it easier for subclass
implementations to add behaviors.

public Coll ection<String> get Event Nanes();

Return a Col | ecti on of logical event names that are supported by the component implementing this
Cl i ent Behavi or Hol der interface. [P1-start-getEventNames]The Col | ecti on must be non null and
unmodifiable.[P1-end]

public Map<String, List<CientBehavior>> getCientBehaviors();

Return a Map containing the event-client behavior association. Each event in the Map may contain one or more
ClientBehavior instances that were added via the addC i ent Behavi or () method.

[P1-start-getBehaviors]Each key value in this Map must be one of the event names in the Col | ecti on returned from
get Event Nanes() . [P1-end]

public String getDefaultEvent Nanme();

Return the default event name for this component behavior if the component defines a default event.

| 3-20 JavaServer Faces Specification « June 2009

3.3

3.3.1

3.3.2

Conversion Model

This section describes the facilities provided by JavaServer Faces to support type conversion between server-side Java
objects and their (typically String-based) representation in presentation markup.

Overview

A typical web application must constantly deal with two fundamentally different viewpoints of the underlying data being
manipulated through the user interface:

= The model view—Data is typically represented as Java programming language objects (often JavaBeans components),
with data represented in some native Java programming language datatype. For example, date and time values might
be represented in the model view as instances of j ava. uti | . Date.

» The presentation view—Data is typically represented in some form that can be perceived or modified by the user of
the application. For example, a date or type value might be represented as a text string, as three text strings (one each
for month/date/year or one each for hour/minute/second), as a calendar control, associated with a spin control that lets
you increment or decrement individual elements of the date or time with a single mouse click, or in a variety of other
ways. Some presentation views may depend on the preferred language or locale of the user (such as the commonly
used mm/dd/yy and dd/mm/yy date formats, or the variety of punctuation characters in monetary amount
presentations for various currencies).

To transform data formats between these views, JavaServer Faces provides an ability to plug-in an optional Convert er
for each Val ueHol der, which has the responsibility of converting the internal data representation between the two
views. The application developer attaches a particular Convert er to a particular Val ueHol der by calling

set Conver t er, passing an instance of the particular converter. A Convert er implementation may be acquired from
the Appl i cati on instance (see Section 7.1.11 “Object Factories”) for your application.

Converter

JSF provides the j avax. f aces. convert. Convert er interface to define the behavioral characteristics of a
Convert er. Instances of implementations of this interface are either identified by a converter identifier, or by a class
for which the Convert er class asserts that it can perform successful conversions, which can be registered with, and
later retrieved from, an Appl i cati on, as described in Section 7.1.11 “Object Factories”.

Often, a Convert er will be an object that requires no extra configuration information to perform its responsibilities.
However, in some cases, it is useful to provide configuration parameters to the Converter (such as a

j ava. t ext . Dat eFor mat pattern for a Convert er that supports j ava. uti | . Dat e model objects). Such
configuration information will generally be provided via JavaBeans properties on the Convert er instance.

Convert er implementations should be programmed so that the conversions they perform are symmetric. In other
words, if a model data object is converted to a String (via a call to the get AsSt ri ng method), it should be possible to
call get AsQbj ect and pass it the converted String as the value parameter, and return a model data object that is
semantically equal to the original one. In some cases, this is not possible. For example, a converter that uses the
formatting facilities provided by the j ava. t ext . For mat class might create two adjacent integer numbers with no
separator in between, and in this case the Convert er could not tell which digits belong to which number.

For Ul | nput and Ul Qut put components that wish to explicitly select a Convert er to be used, a new Convert er
instance of the appropriate type must be created, optionally configured, and registered on the component by calling
set Convert er () !. Otherwise, the JSF implementation will automatically create new instances based on the data type
being converted, if such Converter classes have been registered. In either case, Converter implementations need not be
threadsafe, because they will be used only in the context of a single request processing thread.

1. InaJSP environment, these steps are performed by a custom tag extending ConverterTag.

Chapter 3 User Interface Component Model 3-21

3.3.3

The following two method signatures are defined by the Convert er interface:

public Object get AsObject(FacesContext context, U Conponent
conponent, String value) throws ConverterException;

This method is used to convert the presentation view of a component’s value (typically a String that was received as a
request parameter) into the corresponding model view. It is called during the Apply Request Values phase of the request
processing lifecycle.

public String getAsString(FacesContext context, U Conponent
conponent, hject value) throws ConverterException;

This method is used to convert the model view of a component’s value (typically some native Java programming
language class) into the presentation view (typically a String that will be rendered in some markup language. It is called
during the Render Response phase of the request processing lifecycle.

[P1-start-converter-resource]If the class implementing Convert er has a Resour ceDependency annotation or a
Resour ceDependenci es annotation, the action described in the Javadocs for the Converter interface must be
followed when Val ueHol der . set Converter is called.[Pl-end]

Standard Converter Implementations

JSF provides a set of standard Convert er implementations. A JSF implementation must register the Dat eTi ne and
Nunber converters by name with the Appl i cat i on instance for this web application, as described in the table below.
This ensures that the converters are available for subsequent calls to Appl i cati on. cr eat eConverter (). Each
concrete implementation class must define a static final String constant CONVERTER _| D whose value is the standard
converter id under which this Converter is registered.

[P1-start standard converters] The following converter id values must be registered to create instances of the specified
Converter implementation classes:

= javax. faces. Bi gDeci mal -- An instance of j avax. f aces. convert. Bi gDeci nal Converter (ora
subclass of this class).

= javax. faces. Bi gl nt eger -- An instance of j avax. f aces. convert. Bi gl nt eger Converter (ora
subclass of this class).

= javax. faces. Bool ean -- An instance of j avax. f aces. convert . Bool eanConverter (or a subclass of
this class).

= javax. faces. Byt e -- An instance of j avax. f aces. convert. Byt eConvert er (or a subclass of this class).

= javax. faces. Character -- Aninstance of j avax. f aces. convert . Char act er Convert er (or a subclass
of this class).

= javax. faces. Dat eTi ne -- An instance of j avax. f aces. convert . Dat eTi meConvert er (or a subclass of
this class).

= javax. faces. Doubl e -- An instance of j avax. f aces. convert . Doubl eConvert er (or a subclass of this
class).

= javax. faces. Fl oat -- An instance of j avax. f aces. convert. Fl oat Converter (or a subclass of this
class).

= javax. faces. | nteger -- An instance of j avax. f aces. convert. | nt eger Converter (or a subclass of
this class).

= javax. faces. Long -- An instance of j avax. f aces. convert. LongConvert er (or a subclass of this class).

= javax. faces. Nunmber -- An instance of j avax. f aces. convert . Nunber Convert er (or a subclass of this
class).

| 3-22 JavaServer Faces Specification « June 2009

= javax. faces. Short -- An instance of j avax. f aces. convert. Short Converter (or a subclass of this
class).

[P1-end] See the Javadocs for these classes for a detailed description of the conversion operations they perform, and the
configuration properties that they support.

[P1-start by-Class converters] A JSF implementation must register converters for all of the following classes using the
by-type registration mechanism:

= java. math. Bi gDeci nal, andj ava. mat h. Bi gDeci mal . TYPE -- An instance of
javax. faces. convert. Bi gDeci mal Converter (or a subclass of this class).

= java. math. Bi gl nteger, andjava. math. Bi gl nt eger. TYPE -- An instance of
j avax. faces. convert. Bi gl nt eger Converter (or a subclass of this class).

= java.l ang. Bool ean, and j ava. | ang. Bool ean. TYPE -- An instance of
javax. faces. convert. Bool eanConvert er (or a subclass of this class).

= java.lang. Byte, andj ava. | ang. Byt e. TYPE -- An instance of
j avax. faces. convert. Byt eConverter (or a subclass of this class).

= java.lang. Character, andj ava. |l ang. Character. TYPE -- An instance of
javax. faces. convert. Charact er Converter (or a subclass of this class).

= java.l ang. Doubl e, and j ava. | ang. Doubl e. TYPE -- An instance of
j avax. faces. convert. Doubl eConverter (or a subclass of this class).

= java.lang. Fl oat, and j ava. | ang. Fl oat. TYPE -- An instance of
javax. faces. convert. Fl oat Converter (or a subclass of this class).

= java.lang. | nteger,andjava.l ang. | nteger. TYPE -- An instance of
j avax. faces. convert. | nt eger Convert er (or a subclass of this class).

= java.lang. Long, and j ava. | ang. Long. TYPE -- An instance of
javax. faces. convert. LongConvert er (or a subclass of this class).

= java.lang. Short, andjava. |l ang. Short. TYPE -- An instance of
j avax. faces. convert. Short Convert er (or a subclass of this class).

= java.lang. Enum and j ava. | ang. Enum TYPE -- An instance of
j avax. faces. convert . EnunConvert er (or a subclass of this class).

[P1-end] See the Javadocs for these classes for a detailed description of the conversion operations they perform, and the
configuration properties that they support.

[P1-start allowing string converters] A compliant implementation must allow the registration of a converter for class
java.lang. String andjava. | ang. St ri ng. TYPE that will be used to convert values for these types. [P1-end]

Chapter 3 User Interface Component Model 3-23

3.4

3.4.1

Event and Listener Model

This section describes how JavaServer Faces provides support for generating and handling user interface events and
system events.

Overview

JSF implements a model for event notification and listener registration based on the design patterns in the JavaBeans
Specification, version 1.0.1. This is similar to the approach taken in other user interface toolkits, such as the Swing
Framework included in the JDK.

A Ul Conponent subclass may choose to emit events that signify significant state changes, and broadcast them to
listeners that have registered an interest in receiving events of the type indicated by the event’s implementation class. At
the end of several phases of the request processing lifecycle, the JSF implementation will broadcast all of the events that
have been queued to interested listeners. As of JSF version 2, the specification also defines system events. System events
are events that are not specific to any particular application, but rather stem from specific points in time of running a JSF
application. The following UML class diagram illustrates the key players in the event model. Boxes shaded in gray
indicate classes or interfaces defined outside of the j avax. f aces. event package.

| 3-24 JavaServer Faces Specification « June 2009

4 indujin 7

S ————————
jusAgAoNSagaiduonesiddy {UsAgpafosagdefNmain jUsAgpajEs IS deNMaIA
wC@}@‘wmoﬁﬁx.mbm_
—————————————————
juangabueyoaniep | | jueaguonoy
—— jUsAgWaIsSASIUaUOd o)

puewwolin

—n

49p|oHaN|eAS|q_NPT

<<goBpBIU>

F TUSAIWRISAS - jusAgeseyd _ jusagsasey

@2Inoguonoy
<<ooBlBIUE>

Jauajsijabueyganiep
<<8Jela|U>>

Jauajis|quonay
<<aoBUBIUD>

(J1ouajsineseyd{leny alefogheb

JoOHMBIAIN

Jauajsiiaseyd
<<IEIUC>

Jaugisiisadey
<<@oBuau>>

ajofoay

Jauaisiquaag-|n-eael

=

()sse|nanzioqsiausisifiab

«"0 ()sieusisiiseoedieb
—— juauodwodin

<<pajosloid=>

ToPIOHISUSISITIUSATUISISAS

<<@JBlalU>>

3-25

Chapter 3 User Interface Component Model

3.4.2

3.4.2.1

Application Events

Application events are events that are specific to a particular application. Application events are the standard events that
have been in JSF from the beginning.

Event Classes

All events that are broadcast by JSF user interface components must extend the j avax. f aces. event . FacesEvent
abstract base class. The parameter list for the constructor(s) of this event class must include a Ul Conponent , which
identifies the component from which the event will be broadcast to interested listeners. The source component can be
retrieved from the event object itself by calling get Conponent . Additional constructor parameters and/or properties on
the event class can be used to relay additional information about the event.

In conformance to the naming patterns defined in the JavaBeans Specification, event classes typically have a class name
that ends with Event . It is recommended that application event classes follow this naming pattern as well.

The component that is the source of a FacesEvent can be retrieved via this method:

publi ¢ U Conponent get Conponent ();

FacesEvent has a phasel d property (of type Phasel d, see Section 3.4.2.3 “Phase Identifiers”) used to identify the
request processing lifecycle phase after which the event will be delivered to interested listeners.

publi ¢ Phasel d get Phasel d();

public void setPhasel d(Phaseld phasel d);

If this property is set to Phaseld. ANY_ PHASE (which is the default), the event will be delivered at the end of the phase
in which it was enqueued.

To facilitate general management of event listeners in JSF components, a FacesEvent implementation class must
support the following methods:

public abstract bool ean i sAppropri atelistener(FacesLi stener
listener);

public abstract void processListener(FacesLi stener |istener);

The i sSAppropri at eLi st ener () method returns true if the specified FacesLi st ener is a relevant receiver of
this type of event. Typically, this will be implemented as a simple “instanceof” check to ensure that the listener class
implements the FacesLi st ener subinterface that corresponds to this event class

The processLi st ener () method must call the appropriate event processing method on the specified listener.
Typically, this will be implemented by casting the listener to the corresponding FacesLi st ener subinterface and
calling the appropriate event processing method, passing this event instance as a parameter.

public void queue();

The above convenience method calls the queueEvent () method of the source Ul Conponent for this event, passing
this event as a parameter.

JSF includes two standard FacesEvent subclasses, which are emitted by the corresponding standard Ul Conponent
subclasses described in the following chapter.

| 3-26 JavaServer Faces Specification « June 2009

3422

3.4.2.3

3424

= Acti onEvent —Emitted by a U Command component when the user activates the corresponding user interface
control (such as a clicking a button or a hyperlink).

= Val ueChangeEvent —Emitted by a Ul | nput component (or appropriate subclass) when a new local value has
been created, and has passed all validations.

Listener Classes

For each event type that may be emitted, a corresponding listener interface must be created, which extends the

javax. faces. event . FacesLi st ener interface. The method signature(s) defined by the listener interface must
take a single parameter, an instance of the event class for which this listener is being created. A listener implementation
class will implement one or more of these listener interfaces, along with the event handling method(s) specified by those
interfaces. The event handling methods will be called during event broadcast, one per event.

In conformance to the naming patterns defined in the JavaBeans Specification, listener interfaces have a class name
based on the class name of the event being listened to, but with the word Li st ener replacing the trailing Event of the
event class name (thus, the listener for a FOOEvent would be a FooLi st ener). It is recommended that application
event listener interfaces follow this naming pattern as well.

Corresponding to the two standard event classes described in the previous section, JSF defines two standard event
listener interfaces that may be implemented by application classes:

= ActionLi st ener —a listener that is interested in receiving Act i onEvent events.
= Val ueChangeli st ener —a listener that is interested in receiving Val ueChangeEvent events.

Phase Identifiers

As described in Section 2.3 “Common Event Processing”, event handling occurs at the end of several phases of the
request processing lifecycle. In addition, a particular event must indicate, through the value it returns from the

get Phasel d() method, the phase in which it wishes to be delivered. This indication is done by returning an instance
of j avax. f aces. event . Phasel d. The class defines a typesafe enumeration of all the legal values that may be
returned by get Phasel d() . In addition, a special value (Phasel d. ANY_PHASE) may be returned to indicate that this
event wants to be delivered at the end of the phase in which it was queued.

Listener Registration

A concrete Ul Conponent subclass that emits events of a particular type must include public methods to register and
deregister a listener implementation. [P1-start listener methods must conform to javabeans naming] In order to be
recognized by development tools, these listener methods must follow the naming patterns defined in the JavaBeans
Specification. [P1-end] For example, for a component that emits FOOEvent events, to be received by listeners that
implement the FOOLi st ener interface, the method signatures (on the component class) must be:

public void addFoolLi st ener (FooLi stener |istener);
publ i c FooLi stener[] getFooLi steners();

public void renoveFoolLi stener (FooLi stener |istener);

The application (or other components) may register listener instances at any time, by calling the appropriate add method.
The set of listeners associated with a component is part of the state information that JSF saves and restores. Therefore,
listener implementation classes must have a public zero-argument constructor, and may implement St at eHol der (see
Section 3.2.4 “StateHolder”) if they have internal state information that needs to be saved and restored.

The Ul Commrand and Ul | nput standard component classes include listener registration and deregistration methods for
event listeners associated with the event types that they emit. The Ul | nput methods are also inherited by Ul | nput
subclasses, including Ul Sel ect Bool ean, Ul Sel ect Many, and Ul Sel ect One.

Chapter 3 User Interface Component Model ~ 3-27

3.4.25

3.4.2.6

3.4.3

3.43.1

Event Queueing

During the processing being performed by any phase of the request processing lifecycle, events may be created and
queued by calling the queueEvent () method on the source Ul Conponent instance, or by calling the queue()
method on the FacesEvent instance itself. As described in Section 2.3 “Common Event Processing”, at the end of
certain phases of the request processing lifecycle, any queued events will be broadcast to interested listeners in the order
that the events were originally queued.

Deferring event broadcast until the end of a request processing lifecycle phase ensures that the entire component tree has
been processed by that state, and that event listeners all see the same consistent state of the entire tree, no matter when
the event was actually queued.

Event Broadcasting

As described in Section 2.3 “Common Event Processing”, at the end of each request processing lifecycle phase that may
cause events to be queued, the lifecycle management method of the Ul Vi ewRoot component at the root of the
component tree will iterate over the queued events and call the br oadcast () method on the source component
instance to actually notify the registered listeners. See the Javadocs of the br oadcast () method for detailed functional
requirements.

During event broadcasting, a listener processing an event may:

= Examine or modify the state of any component in the component tree.

= Add or remove components from the component tree.

= Add messages to be returned to the user, by calling addMessage on the FacesCont ext instance for the current
request.

= Queue one or more additional events, from the same source component or a different one, for processing during the
current lifecycle phase.

= Throw an Abort Processi ngExcepti on, to tell the JSF implementation that no further broadcast of this event
should take place.

= Call render Response() on the FacesCont ext instance for the current request. This tells the JSF
implementation that, when the current phase of the request processing lifecycle has been completed, control should be
transferred to the Render Response phase.

= Call responseConpl et e() on the FacesCont ext instance for the current request. This tells the JSF
implementation that, when the current phase of the request processing lifecycle has been completed, processing for
this request should be terminated (because the actual response content has been generated by some other means).

System Events

System Events are introduced in version 2 of the specification and represent specific points in time for a JSF application.
PhaseEvent s also represent specific points in time in a JSF application, but the granularity they offer is not as precise
as System Events. For more on PhaseEvent s, please see Section 12.2 “PhaseEvent”.

Event Classes

All system events extend from the base class Syst enEvent . Syst enEvent has a similar API to FacesEvent, but
the sour ce of the event is of type Obj ect (instead of Ul Conponent), Syst emEvent has no Phasel d property
and Syst enEvent has no queue() method because Syst enmEvent s are never queued. Syst emEvent shares

i SAppropri ateLi stener() and processLi stener () with FacesEvent. For the specification of these
methods see 3. 4. 2. 1.

System events that originate from or are associated with specific component instances should extend from
Conponent Syst enEvent , which extends Syst emEvent and adds a get Conponent () method, as specififed in
3.4.2. 1.

The specification defines the following Syst enEvent subclasses, all in package j avax. f aces. event.

| 3-28 JavaServer Faces Specification « June 2009

3432

3.43.3

= Excepti onQueuedEvent indicates a non-expected Except i on has been thrown. Please see Section 6.2
“ExceptionHandler” for the normative specification.

= Post Construct Appl i cati onEvent must be published immediately after application startup. Please see
Section 11.4.2 “Application Startup Behavior” for the normative specification.

= PreDestroyApplicati onEvent must be published as immediately before application shutdown. Please see
Section 11.4.3 “Application Shutdown Behavior” for the normative specification

The specification defines the following Conponent Syst enEvent classes, all in package j avax. f aces. event .

= | nitial StateEvent must be published with a direct call to U Conponent . pr ocessEvent (), during the
appl y() method of the class j avax. f aces. webapp. vdl . Conponent Handl er. Please see the javadocs for
the normative specification.

= Post AddToVi ewEvent indicates that the Sour ce component has just been added to the view. Please see
Section 3.1.7 “Component Tree Manipulation” for a reference to the normative specification.

= Post Const ruct Vi ewvhpEvent indicates that the Map that is the view scope has just been created. Please see,
the UI'ViewRoot Section 4.1.19.4 “Events” for a reference to the normative specification.

= Post Rest oreSt at eEvent indicates that an individual component instance has just had its state restored. Please
see the Ul Vi ewRoot Section 4.1.19.4 “Events” for a reference to the normative specification.

= Post Val i dat eEvent indicates that an individual component instance has just been validated. Please see the
Edi t abl eVal ueHol der Section 3.2.7.3 “Events” for the normative specification.

= PreDestroyVi emapEvent indicates that the Map that is the view scope is about to be destroyed. Please see, the
UlIViewRoot Section 4.1.19.2 “Properties” for the normative specification.

= PreRender Conponent Event indicates that the Sour ce component is about to be rendered. Please see
Section 3.1.7 “Component Tree Manipulation” for a reference to the normative specification.

= PreRender Vi ewEvent indicates that the Ul Vi ewRoot source component is about to be rendered. Please see
Section 2.2.6 “Render Response” for the normative specification.

= PreValidat eEvent indicates that an individual component instance is about to be validated. Please see the
Edi t abl eVal ueHol der Section 3.2.7.3 “Events” for the normative specification.

Listener Classes

Unlike application events, the creation of new event types for system events does not require the creation of new listener
interfaces. All Syst emEvent types can be listened for by listeners that implement

j avax. faces. event . Syst emEvent Li st ener. Please see the javadocs for that class for the complete
specification.

As a developer convenience, the listener interface Conponent Syst enEvent Li st ener has been defined for those
cases when a Syst enEvent Li st ener is being attached to a specific Ul Conponent instance.

Conponent Syst enEvent Li st ener lacks thei sLi st ener For Sour ce() method because it is implcictly defined
by virture of the listener being added to a specific component instance.

Programmatic Listener Registration

System events may be listened for at the Application level, using Appl i cati on. subscri beToEvent () or at the
component level, by calling subscri beToEvent () on a specific component instance. The specification for
Application. subscri beToEvent () may be found in Section 7.1.13 “System Event Methods”.

The following methods are defined on Ul Conponent to support per-component system events.

public void subscribeToEvent (C ass<? extends SystenEvent>
event d ass, Conponent Syst emEvent Li st ener conponent Li st ener);
public void unsubscribeFronEvent (Cl ass<? extends SystenkEvent >
event d ass, Conponent Syst enEvent Li st ener conponentLi stener);

Chapter 3 User Interface Component Model 3-29

3434

3.43.5

3.4.3.6

3.4.3.7

See the javadoc for Ul Conponent for the normative specification of these methods.

In addition to the above methods, the @.i st ener For and @.i st ener sFor annotations allow components, renderers,
validators and converters to declare that they want to register for system events. Please see the javadocs for those
annotations for the complete specification.

Declarative Listener Registration

Page authors can subscribe to events using the <f:event/> tag. This tag will allow the application developer to specify the
method to be called when the specifed event fires for the component of which the tag is a child. The tag usage is as
follows:

<h:i nput Text val ue="#{nmyBean.text}">
<f:event type="beforeRender"
| i st ener="#{ myBean. bef or eText Render}" />
</ h:i nput Text >

The type attribute specifies the type of event, and can be any of the specification-defined events or one of any user-
defined events, but must be a Conponent Syst enEvent, using either the short-hand name for the event or the fully-
qualified class name (e.g., com f 00. app. event . Cust onEvent). If the event can not be found, a
FacesExcepti on listing the offending event type will be thrown. Please see the tlddocs for the <f : event /> tag
for the normative specification of the declarative event feature.

The method signature for the Met hodExpr essi on pointed to by the listener attribute must match the signature of
j avax. faces. event . Conponent Syst enEvent Li st ener. processEvent ().

Listener Registration By Annotation

The Li st ener For and Li st ener sFor annotations can be applied to components and rendererers. Classes tagged
with the Li st ener For annotation are installed as listeners. The Li st ener sFor annotation is a container
annotation tp specify multiple Li st ener For annotations for a single class. Please refer to the Javadocs for the

Li stener For and Li stenersFor classes for nore details.

Listener Registration By Application Configuration Resources

A <system event-|i st ener > element, within the <appl i cat i on> element of an application configuration
resource, declares an application scoped listener and causes a call to Appl i cati on. subscri beToEvent ().

Event Broadcasting

System events are broadcast immediately by calls to Appl i cati on. publ i shEvent () Please see Section 7.1.13
“System Event Methods” for the normative specification of publ i shEvent ().

| 3-30 JavaServer Faces Specification « June 2009

3.5.1

3.5.2

3.5.3

Validation Model

This section describes the facilities provided by JavaServer Faces for validating user input.

Overview

JSF supports a mechanism for registering zero or more validators on each Edi t abl eVal ueHol der component in the
component tree. A validator’s purpose is to perform checks on the local value of the component, during the Process
Validations phase of the request processing lifecycle. In addition, a component may implement internal checking in a
val i dat e method that is part of the component class.

Validator Classes

A validator must implement the j avax. f aces. val i dat or. Val i dat or interface, which contains a val i dat e()
method signature.

public void validate(FacesContext context, U Conponent
conponent, Object val ue);

General purpose validators may require configuration values in order to define the precise check to be performed. For
example, a validator that enforces a maximum length might wish to support a configurable length limit. Such
configuration values are typically implemented as JavaBeans component properties, and/or constructor arguments, on the
Val i dat or implementation class. In addition, a validator may elect to use generic attributes of the component being
validated for configuration information.

JSF includes implementations of several standard validators, as described in Section 3.5.5 “Standard Validator
Implementations”.

Validation Registration

The Edi t abl eVal ueHol der interface (implemented by Ul | nput) includes an addVal i dat or method to register
an additional validator for this component, and a r eroveVal i dat or method to remove an existing registration. In JSF
1.1 there was the ability to set a Met hodBi ndi ng that points to a method that adheres to the val i dat e signature in the
Val i dat or interface, which will be called after the Validator instances added by calling addValidator() have been
invoked. In JSF 1.2, this has been replaced by providing a new wrapper class that implements Val i dat or, and accepts
a Met hodExpr essi on instance that points to the same method that the Met hodBi ndi ng pointed to in JSF 1.1.
Please see the javadocs for Edi t abl eVal ueHol der. set Val i dator ().

The application (or other components) may register validator instances at any time, by calling the addVal i dat or
method. The set of validators associated with a component is part of the state information that JSF saves and restores.
Validators that wish to have configuration properties saved and restored must also implement St at eHol der (see
Section 3.2.4 “StateHolder”).

In addition to validators which are registered explicitly on the component, either through the Java API or in the view
markup, zero or more “default validators” can be declared in the application configuration resources, which will be
registered on all Ul | nput instances in the component tree unless explicitly disabled. [P1-start-validator-reg| The default
validators are appended after any locally defined validators once the Edi t abl eVal ueHol der is populated and added
to the component tree. See the javadocs for Ul | nput . encodeEnd() for the normative specification. A default
validator must not be added to a Ul | nput if a validator having the same id is already present.

Chapter 3 User Interface Component Model 3-31

3.54

The typical way of registering a default validator id is by declaring it in a configuration resource, as follows:

<faces-confi g>
<application>

<def aul t - val i dat or s>
<val i dat or -i d>j avax. f aces. Bean</ val i dat or-i d>

</def aul t -val i dat or s>
<application/>

</ faces-config>

A default validator may also be registered using the i sDef aul t attribute on the @acesVal i dat or annotation on a
Val i dat or class, as specified in Section 11.5.1 “Requirements for scanning of classes for annotations”.

The during application startup, the runtime must cause any default validators declared either in the application
configuration resources, or via a @acesVal i dat or annotation with i sDef aul t settot r ue to be added with a call
to Appl i cati on. addDef aul t Val i dat or | d() . This method is declared in Section 7.1.11.1 “Default Validator
Ids”.

Any configuration resource that declares a list of default validators overrides any list provided in a previously processed
configuration resource. If an empty <def aul t - val i dat or s/ > element is found in a configuration resource, the list
of default validators must be cleared.

In environments that include Bean Validation, the following additional actions must be taken at startup time. If the
j avax. faces. val i dat or. DI SABLE_BEAN_VALI DATOR <cont ext - par an® exists and its value is t r ue, the
following step must be skipped:

= The runtime must guarantee that the validator id j avax. f aces. Bean is included in the result from a call to
Application. get Def aul t Val i dat or I nf o() (see Section 7.1.11.1 “Default Validator Ids”), regardless of any
configuration found in the application configuration resources or via the @-acesVal i dat or annotation.[P1-end]

Validation Processing

During the Process Validations phase of the request processing lifecycle (as described in Section 2.2.3 “Process
Validations”), the JSF implementation will ensure that the val i dat €() method of each registered Val i dat or, the
method referenced by the val i dat or property (if any), and the val i dat e() method of the component itself, is called
for each Edi t abl eVal ueHol der component in the component tree, regardless of the validity state of any of the
components in the tree. The responsibilities of each val i dat e() method include:

= Perform the check for which this validator was registered.

= If violation(s) of the correctness rules are found, create a FacesMessage instance describing the problem, and
create a Val i dat or Except i on around it, and throw the Val i dat or Excepti on. The
Edi t abl eVal ueHol der on which this validation is being performed will catch this exception, set val i d to
f al se for that instance, and cause the message to be added to the FacesCont ext .

In addition, a val i dat e() method may:

= Examine or modify the state of any component in the component tree.

= Add or remove components from the component tree.

= Queue one or more events, from the same component or a different one, for processing during the current lifecycle
phase.

The render-independent property r equi r ed is a shorthand for the function of a “required” validator. If the value of this
property is true and the component has no value, the component is marked invalid and a message is added to the
FacesCont ext instance. See Section 2.5.2.4 “Localized Application Messages” for details on the message.

| 3-32 JavaServer Faces Specification « June 2009

3.5.5

3.5.6

Standard Validator Implementations

JavaServer Faces defines a standard suite of Val i dat or implementations that perform a variety of commonly required
checks. In addition, component writers, application developers, and tool providers will often define additional

Val i dat or implementations that may be used to support component-type-specific or application-specific constraints.
These implementations share the following common characteristics:

= Standard Val i dat or s accept configuration information as either parameters to the constructor that creates a new
instance of that Val i dat or, or as JavaBeans component properties on the Val i dat or implementation class.

= To support internationalization, FacesMessage instances should be created. The message identifiers for such
standard messages are also defined by manifest String constants in the implementation classes. It is the user’s
responsibility to ensure the content of a FacesMessage instance is properly localized, and appropriate parameter
substitution is performed, perhaps using j ava. t ext . MessageFor mat .

= See the javadocs for Ul | nput . val i dat eVal ue() for further normative specification regarding validation.

= Concrete Validator implementations must define a public static final String constant VALIDATOR _ID, whose value is
the standard identifier under which the JSF implementation must register this instance (see below).

Please see Section 2.5.2.4 “Localized Application Messages” for the list of message identifiers.

[P1-start standard validators] The following standard Val i dat or implementations (in the
j avax. f aces. val i dat or package) are provided:

= Doubl eRangeVal i dat or —Checks the local value of a component, which must be of any numeric type, against
specified maximum and/or minimum values. Standard identifier is “javax.faces.DoubleRange”.

= Lengt hVal i dat or —Checks the length (i.e. number of characters) of the local value of a component, which must
be of type Stri ng, against maximum and/or minimum values. Standard identifier is “javax.faces.Length”.

= LongRangeVal i dat or —Checks the local value of a component, which must be of any numeric type convertible to
| ong, against maximum and/or minimum values. Standard identifier is “javax.faces.LongRange”.

= RegexVal i dat or —Accepts a “pattern” attribute that is interpreted as a regular expression from the
java.util.regex package. The local value of the component is checked fora match against this regular
expression. Standard identifier is “javax.faces.RegularExpression”

= BeanVal i dat or - The implementation must ensure that this validator is only available when running in an
environment in which JSR-303 Beans Validation is available. Please see the javadocs for
BeanVal i dat or. val i dat e() for the specification.Standard identifier is “javax.faces.Bean”

= RequiredValidator - Analogous to setting the required attribute to true on the EditableValueHolder. Enforces that the
local value is not empty. Reuses the logic and error messages defined on Ullnput. The standard identifier for this
validator is "javax.faces.Required"

Met hodExpr essi onVal i dat or —Wraps a Met hodExpr essi on and interprets it as pointing to a method that
performs validation. Any exception thrown when the expression is invoked is wrapped in a Val i dat or Excepti on in
similar fashion as the above validators. [P1-end]

Bean Validation Integration

If the implementation is running in a container environment that requires Bean Validation, it must expose the bean
validation as described in this specification.

As stated in the specification goals of JSR 303, validation often gets spread out across the application, from user
interface components to persistent objects. Bean Validation strives to avoid this duplication by defining a set of metadata
that can be used to express validation constraints that are sharable by any layer of the application. Since its inception,
JSF has supported a “field level validation” approach. Rather than requiring the developer to define validators for each
input component (i.e., Edi t abl eVal ueHol der), the BeanValidator can be automatically applied to all fields on a
page so that the work of enforcing the constraints can be delegated to the Bean Validation provider.

Chapter 3 User Interface Component Model 3-33

3.5.6.1 Bean Validator Activation

[P1-BeanValidationIntegration]If Bean Validation is present in the runtime environment, the system must ensure that the
j avax. f aces. Bean standard validator is added with a call to Appl i cati on. addDef aul t Val i dat or 1 d() .[P1-
end] This has the effect that Ul | nput . encodeEnd() will cause Bean Validation to be called for every field in the
application.

If Bean Validation is present, and the j avax. f aces. VALI DATE_EMPTY_FI ELDS <cont ext - par an® is not
explicitly set to f al se, JSF will validate nul | and empty fields so that the @Not Nul | and @Not Enpt y constraints
from Bean Validation can be leveraged. The next section describes how the reference to the Bean Validation
ValidatorFactory is obtained by that validator.

3.5.6.2 Obtaining a ValidatorFactory

The Bean Validation ValidatorFactory is the main entry point into Bean Validation and is responsible for creating

Validator instances. [P1-start-validatoryfactory]A ValidatorFactory is retrieved using the following algorithm:

= [f the servlet context contains a ValidatorFactory instance under the attribute named
javax.faces.validator.beanValidator. ValidatorFactory, this instance is used by JSF to acquire Validator instances
(specifically in the BeanValidator). This key should be defined in the constant named VALIDATOR_FACTORY_KEY
on BeanValidator.

= [f the servlet context does not contain such an entry, JSF looks for a Bean Validation provider in the classpath. If
present, the standard Bean Validation bootstrap strategy is used. If not present, Bean Validation integration is
disabled. If the BeanValidator is used an no ValidatorFactory can be retrieved, a FacesException is raised. The
standard Bean Validation bootstrap procedure is shown here:

Val i dat or Fact ory val i dator Factory =
Val i dati on. bui | dDef aul t Val i dat or Factory();

Once instantiated, the result can be stored in the servlet context attribute mentioned as a means of caching the result.
If JSF is running in an EE6 environment, Bean Validation will be available, as defined by the EE6 specification, and
thus activated in JSF. The EE container will be responsible for making the ValidatorFactory available as an attribute
in the ServletContext as mentioned above.[P1-end]

| 3-34 JavaServer Faces Specification « June 2009

3.5.6.3

Localization of Bean Validation Messages

To ensure proper localization of the messages, JSF should provide a custom BeanValidation Messagelnterpolator
resolving the Locale according to JSF defaults and delegating to the default Messagelnterpolator as defined in
ValidationFactory.getMessagelnterpolator(). A possible implementation is shown here:

public class JsfMessagel nterpol ator inplenents
Messagel nt er pol at or {

private final Messagel nterpol ator del egate;

publi c Jsf Messagel nt er pol at or (Messagel nter pol at or del egate) {
t hi s. del egate = del egat €;

}

public String interpolate(String message, ConstraintDescriptor
constraint Descriptor, Obj ect val ue) {
Local e locale =
FacesCont ext. get Current | nstance(). get Vi ewRoot ().
get Local e();
return this.del egate.interpolate(
nmessage, constraintDescriptor, value, locale);

}

public String interpolate(String nmessage, ConstraintDescriptor
constraint Descriptor, Cbject value, Locale locale) {
return this.del egate.interpol ate(message,
constrai ntDescriptor, value, |ocale);

Once a ValidatorFactory is obtained, as described in Section 3.5.6.2 “Obtaining a ValidatorFactory”, JSF receives a
Validator instance by providing the custom message interpolator to the validator state.

//coul d be cached
Messagel nt er pol at or j sf Messagel nterpol ator = new
Jsf Messagel nt er pol at or (
val i dat or Fact ory. get Messagel nterpol ator());

/...

Val i dator validator = validatorFactory
. usi ngCont ext ()
. messagel nt er pol at or (j sf Messagel nt er pol at or)
.getValidator();

The local value is then passed to the Validator.validateValue() method to check for constraint violations. Since Bean
Validation defines a strategy for localized message reporting, the BeanValidator does not need to concern itself with
producing the validation message. Instead, the BeanValidator should accept the interpolated message returned from Bean
Validation API, which is accessed via the method getInterpolatedMessage() on the ContraintFailure class, and use it as

Chapter 3 User Interface Component Model 3-35

the replacement value for the first numbered placeholder for the key javax.faces.validator.BeanValidator MESSAGE (i.e.,
{0}). To encourage use of the Bean Validation message facility, the default message format string for the BeanValidator
message key must be a single placeholder, as shown here:

j avax. faces. val i dat or. BeanVal i dat or . MESSAGE={ 0}

Putting the Bean Validation message resolution in full control of producing the displayed message is the recommended
approach. However, to allow the developer to align the messages generated by the BeanValidator with existing JSF 1.2
validators, the developer may choose to override this message key in an application resource bundle and reference the
component label, which replaces the second numbered placeholder (i.e., {1}).

j avax. faces. val i dat or. BeanVal i dat or . MESSAGE={1}: {0}

This approach is useful if you are already using localized labels for your input components and are displaying the
messages above the form, rather than adjacent to the input.

3.6

3.6.1

3.6.1.1

Composite User Interface Components

Non-normative Background

To aid implementors in providing a spec compliant runtime for composite components, this section provides a non-
normative background to motivate the discussion of the composite component feature. The composite component feature
enables developers to write real, reusable, JSF UI components without any Java code or configuration XML.

What does it mean to be a JSF User Interface component?

JSF is a component based framework, and JSF UI components are the main point of JSF. But what is a JSF Ul
component, really? Conceptually, a JSF UI Component is a software artifact that represents a reusable, self contained
piece of a user interface. A very narrow definition for “JSF UI Component” is imposed at runtime. This definition can be
summarized as

A JSF UI Component is represented at runtime by an instance of a Java class that includes
j avax. f aces. conmponent . Ul Conponent as an ancestor in its inheritance hierarchy.

It is easy to write a class that adheres to this definition, but in practice, component authors need to do more than just this
in order to get the most from JSF and to conform to user’s expectations of what a JSF Ul Component is. For example,
users expect a JSF Ul Component can do some or all of the following:

= be exposed to the page-author via a markup tag with sensible attributes

= emit events (such a Val ueChangeEvent or Acti onEvent)

= allow attaching listeners

= allow attaching a Convert er and/or Val i dat or (s)

= render itself to the user-agent, with full support for styles, localization and accessibility
= support delegated rendering to allow for client device independence

= read values sent from the user-agent and correctly adapt them to the faces lifecycle

= correctly handle saving and restoring its state across multiple requests from the user-agent

| 3-36 JavaServer Faces Specification « June 2009

3.6.1.2

3.6.1.3

Another important dimension to consider regarding Ul components is the context in which the developer interacts with
the component. There are generally two such contexts.

= In the context of a markup page, such as a JSP or Facelet page. In this context the developer interacts with the Ul
component using a markup element, setting attributes on that element, and nesting child elements within that
component markup element.

= In the context of code, such as a listener, a managed-bean, or other programming language context. In this context, the
developer is writing JavaCode that is either passed the UI component as an argument, or obtains a reference to the Ul
component in some other way.

How does one make a custom JSF User Interface component (JSF 1.2 and earlier)?

To satisfy a user’s expectations for a JSF Ul component, the component author must adhere to one of the following best
practices.

= extend the custom component class from an existing subclass of Ul Conponent that most closely represents the
meaning and behavior of the piece of the Ul you are encapsulating in the component.

= extend the custom component class directly from Ul Conponent Base and implement the appropriate “behavioral
interface”(s) that most closely represents the meaning and behavior of the piece of the Ul you are encapsulating in the
component. See Section 3.2 “Component Behavioral Interfaces” for more.

Note that the first best practice includes the second one “for free” since the stock Ul Conponent subclasses already
implement the appropriate behavioral interfaces.

When following either best practice, the JSF Ul component developer must follow several steps to make the component
available for use in markup pages or in code, including but not necessarily limited to

= Make entries in a f aces-confi g. xm file, linking the component class to its conmponent - t ype, which enables
the Appl i cati on. cr eat eConponent () method to create instances of the component.

= Make entries in a f aces- confi g. xm file to declare a Render er that provides client-device independence.

= Provide a JSP or Facelet tag handler that allows the page author to build Uls that include the component, and to
customize each instance of the component with listeners, properties and model associations. This includes making the
association between the Render er and the Ul Conponent .

= Provide a Render er that provides client device independency for the component

= Make entries in a f aces- confi g. xml file that links the Render er and its Java class.

These steps are complex, yet the components one creates by following them can be very flexible and powerful. By
making some simplifying assumptions, it is possible to allow the creation of components that are just as powerful but
require far less complexity to develop. This is the whole point of composite components: to enable developers to write
real, reusable, JSF UI components without any Java code or configuration XML.

How does one make a composite component?

The composite component feature builds on two features introduced in JSF 2.0: resources (Section 2.6 “Resource
Handling”) and Facelets (Chapter 10 “Facelets and its use in Web Applications”). Briefly, a composite component is any
Facelet markup file that resides inside of a resource library. For example, if a Facelet markup file named

| ogi nPanel . xht m resides inside of a resource library called ezconp, then page authors can use this component by
declaring the xml namespace X ns: ez="htt p://j ava. sun. coni j sf/ conposi t e/ ezconp" and including
the tag <ez: | ogi nPanel /> in their pages. Naturally, it is possible for a composite component author to declare an
alternate XML namespace for their composite components, but doing so is optional.

Any valid Facelet markup is valid for use inside of a composite component, including the templating features specified
in Section 10.4.3 “Facelet Templating Tag Library”. In addition, the tag library specified in Section 10.4.4 “Composite
Component Tag Library” must be used to declare the metadata for the composite component. Future versions of the JSF
specification may relax this requirement, but for now at least the <conposi te: i nterface> and

<conposi te: i npl ement at i on> sections are required when creating a composite component.

Chapter 3 User Interface Component Model 3-37

3.6.14 A simple composite component example

Create the page that uses the composite component, i ndex. xht i .

<I DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional //EN
"http://ww. w3. org/ TR/ xht ml 1/ DTD/ xht M 1-transi tional . dtd">
<htm xm ns="http://ww.w3.org/ 1999/ xhtm "

xm ns: h="http://java.sun.conljsf/htm"

xm ns: f="http://java. sun. conijsf/core"

xm ns:ez="http://java. sun. conij sf/ conposite/ ezcomp" >
<h: head>
<title>A sinple exanple of EZComp</title>
</ h: head>

<h: body>
<h: f or n>
<ez: | ogi nPanel id="1ogi nPanel ">

<f:actionListener for="1ogi nEvent"
bi ndi ng="#{bean. | ogi nEvent Li stener}" />

</ ez: | ogi nPanel >
</ h: fornme
</ h: body>

</htm >

The only thing special about this page is the €z namespace declaration and the inclusion of the <ez: | ogi nPanel />
tag on the page. The occurrence of the string “ht t p: //j ava. sun. coni j sf/ conposi t e/ ” in a Facelet XML
namespace declaration means that whatever follows that last “/ ” is taken to be the name of a resource library. For any
usage of this namespace in the page, such as <ez: | ogi nPanel />, a Facelet markup file with the corresponding
name is loaded and taken to be the composite component, in this case the file | ogi nPanel . xht m . The
implementation requirements for this and other Facelet features related to composite components are specified in
Section 10.3.3 “Requirements specific to composite components”.

| 3-38 JavaServer Faces Specification * June 2009

Create the composite component markup page. In this case, | ogi nPanel . xht ml resides in the
. /I resour ces/ ezconp directory relative to the i ndex. xht m file.

<I DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional //EN'
"http://ww. w3. org/ TR/ xht ml 1/ DTD/ xht M 1-transi ti onal . dtd">
<htm xm ns="http://ww. w3. org/ 1999/ xhtm "
xm ns: h="http://java.sun.conljsf/htm"
xm ns: f="http://java. sun. conijsf/core"
xm ns:ui ="http://java. sun. conijsf/facel ets”
xm ns: conposite="http://java. sun. conlj sf/conmposite">
<head>
<title>Not present in rendered output</title>
</ head>
<body>
<conposite:interface>
<conposite: actionSource name="|ogi nEvent" />
</ conposite:interface>
<conposi te:inpl ementati on>
<p>Usernane: <h:inputText id="usernanel nput" /></p>
<p>Passwor d: <h:input Secret id="passwordl nput" /></p>
<p><h: conmandBut t on i d="1ogi nEvent" val ue="1ogi n"/>
</ conposi te:inpl ementati on>

</ body>

</htm >

The <conposi t e: i nt er f ace> section declares the public interface that users of this component need to understand.
In this case, the component declares that it contains an implementation of Act i onSour ce2 (see Section 3.2.2
“ActionSource2”), and therefore anything one can do with an Acti onSour ce2 in a Facelet markup page you one do
with the composite component. (See Section 3.2 “Component Behavioral Interfaces” for more on Act i onSour ce2 and
other behavioral interfaces). The <conmposi t e: i npl enent at i on> section defines the implementation of this
composite component.

3.6.1.5 Walk through of the run-time for the simple composite component example

This section gives a non-normative traversal of the composite component feature using the previous expample as a guide.
Please refer to the javadocs for the normative specification for each method mentioned below. Any text in italics is a
term defined in Section 3.6.1.6 “Composite Component Terms”.

1. The user-agent requests the i ndex. ht m from Section 3.6.1.4 “A simple composite component example”. This page
contains the ‘xm ns: ez="http://java. sun. coni j sf/ conposi t e/ ezconp" * declaration and an occurrence of
the <ez: | ogi nPanel > tag. Because this page contains a usage of a composite component, it is called a using page
for discussion.

Chapter 3 User Interface Component Model 3-39

The runtime notices the use of an xml namespace beginning with “htt p: //j ava. sun. conl j sf/conposite/”.
Takes the substring of the namespace after the last “/”, exclusive, and looks for a resource library with the name
“ezconp” by calling Resour ceHandl er. | i braryExi sts().

. The runtime encounters the <ez: | ogi nPanel > component in the using page. This causes

Appl i cati on. creat eConponent (FacesCont ext, Resource) to be called. This method instantiates the
top level component but does not populate it with children. Pay careful attention to the javadocs for this method.
Depending on the circumstances, the fop level component instance can come from a developer supplied Java Class, a
Script, or an implementation specific java class. This method calls

Vi ewDecl ar at i onLanguage. get Conponent Met adat a(FacesCont ext, Resour ce), which obtains the
composite component BeanInfo (and therefore also the composite component BeanDescriptor) that exposes the
composite component metadata. The composite component metadata also includes any attached object targets
exposed by the composite component author. One thing that

Application. creat eConponent (FacesCont ext, Resource) does to the component before returning it
is set the component’s renderer type to be j avax. f aces. Conposi t e. This is important during rendering.

Again, Appl i cati on. cr eat eConponent (FacesCont ext, Resource) does not populate the fop level
component with children. Subsequent processing done as the runtime traverses the rest of the page takes care of that.
One very important aspect of that subsequent processing is ensuring that all of the Ul Conponent children in the
defining page are placed in a facet underneath the top level component. The name of that facet is given by the

Ul Conmponent . COMPCOSI TE_FACET_NAME constant.

. After the children of the composite component tag in the using page have been processed by the VDL

implementation, the VDL implementation must call VDLUt i | s. r et ar get At t achedCbj ect s() . This method
examines the composite component metadata and retargets any attached objects from the using page to their
approriate inner component targets.

. Because the renderer type of the composite component was set to j avax. f aces. Conposi t e, the composite

component renderer is invoked to render the composite component.

3.6.1.6 Composite Component Terms
The following terms are commonly used to describe the composite component feature.
Attached Object Any artifact that can be attached to a U Conponent (composite or otherwise). Usually, this means a
Converter, Val i dat or, Acti onLi st ener, or Val ueChangelLi st ener.

Attached Object Target Part of the composite component metadata that allows the composite component author to expose the
semantics of an inner component to the using page author without exposing the rendering or implementation
details of the inner component.

Composite Component A tree of Ul Conponent instances, rooted at a fop level component, that can be thought of and used as a

single component in a view. The component hierarchy of this subtree is described in the composite
component defining page.

Composite Component

Author The individual or role creating the composite component. This usually involves authoring the composite
component defining page.

Composite Component

BeanDescr i pt or A constituent element of the composite component metadata. This version of the spec uses the JavaBeans

API to expose the component metadata for the composite component. Future versions of the spec may use a
different API to expose the component metadata.

Composite Component

Beanl nf o The main element of the composite component metadata.

Composite Component

Declaration The section of markup within the composite component defining page that includes the

<conposi te:interface> section and its children.

| 3-40 JavaServer Faces Specification « June 2009

Composite Component

Definition

Composite Component

Library

Composite Component

Metadata

Composite Component

Renderer

Composite Component

Tag

Defining page

The section of markup within the composite component defining page that includes the
<conposi te:inpl ement at i on> section and its children.

A resource library that contains a defining page for each composite component that the composite
component author wishes to expose to the using page author.

Any data about the composite component. The normative specification for what must be in the composite
component metadata is in the javadocs for
Vi ewDecl ar ati onLanguage. get Conponent Met adat a() .

A new renderer in the HTML_BASI C render kit that knows how to render a composite component.

The tag in the using page that references a composite component declared and defined in a defining page.

The markup page, usually Facelets markup, that contains the composite component declaration and

composite component definition.

Inner Component Any Ul Conponent inside of the defining page or a page that is referenced from the defining page.

Top level component The Ul Conponent instance in the tree that is the parent of all Ul Conponent instances within the

defining page and any pages used by that defining page.
Using Page The VDL page in which a composite component tag is used.

Using Page Author The individual or role that creates pages that use the composite component.

3.6.2 Normative Requirements

This section contains the normative requirements for the composite component runtime, or pointers to other parts of the
specification that articulate those requirements in the appropriate context.

TABLE 3-1 References to Composite Component Requirements in Context

Section Feature

Section 5.6.2.1
“Implicit Object
ELResolver for
Facelets and
Programmatic Access”

Ability for the composite component author to refer to the top level
component from an EL expression, such as #{ cc. chil dren[3] }.

Section 5.6.2.2 Ability for the composite component author to refer to attributes declared

“Composite on the composite component tag using EL expressions such as
Component Attributes #{cc. attrs. user naneLabel }
ELResolver”

Section 7.1.11 “Object
Factories”

Methods called by the VDL page to create a new instance of a top level
component for eventual inclusion in the view

Section 10.3.3
“Requirements
specific to composite
components”

Requirements of the Facelet implementation relating to Facelets.

Section 10.4.4
“Composite
Component Tag
Library”

Tag handlers for the conposi t e tag library

Chapter 3 User Interface Component Model 3-41

3.6.2.1 Composite Component Metadata

In the current version of the specification, only composite Ul Conponent s must have component metadata. It is
possible that future versions of the specification will broaden this requirement so that all U Conponent s must have
metadata.

This section describes the implementation of the composite component metadata that is returned from the method
Vi ewDecl ar ati onLanguage. get Conponent Met adat a() . This method is formally declared in Section 7.6.2.3
“ViewDeclarationLanguage.getComponentMetadata()”, but for reference its signature is repeated here.

publ i ¢ Beanl nfo get Conponent Met adat a(FacesCont ext cont ext,
Resour ce conponent Resour ce)

The specification requires that this method is called from Appl i cati on. cr eat eConponent (FacesCont ext
context, Resource conponent Resource). See the javadocs for that method for actions that must be taken
based on the composite component metadata returned from get Conponent Met adat a() .

The default implementation of this method must support authoring the component metadata using tags placed inside of a
<conposite:interface /> element found on a defining page. This element is specified in the Facelets taglibrary
docs.

Composite component metadata currently consists of the following information:
» The composite component BeanInfo, returned from this method.

= The Resour ce from which the composite component was created.

» The composite component BeanDescriptor.

This BeanDescr i pt or must be returned when get BeanDescri pt or () is called on the composite component
Beanl nf o.

The composite component BeanDescr i pt or exposes the following information.

CEENNT3 CLINY3 9

= The “displayName”, “name”, “shortDescription”, “expert”, “hidden”, and “preferred” attributes of the
<conposite:interface/ > clement are exposed using the corresponding methods on the composite
component BeanDescr i pt or. Any additional attributes on <conposi te: i nterface/ > areexposed as
attributes accessible from the get Val ue() and attri but eNames() methods on BeanDescr i pt or
(inherited from Feat ur eDescr i pt or). The return type from get Val ue() must be a
j avax. el . Val ueExpr essi on for such attributes.

« The list of exposed At t achedObj ect Tar get s to which the page author can attach things such as listeners,
converters, or validators.

The VDL implementation must populate the composite component metadata with a
Li st <At t achedObj ect Tar get > that includes all of the inner components exposed by the composite
component author for use by the page author.

This List must be exposed in the value set of the composite component BeanDescr i pt or under the key
At t achedObj ect Tar get . ATTACHED OBJECT_TARGETS_KEY.

For example, if the defining page has

<composite:interface>
<conposi te: edi tabl eVal ueHol der nanme="user nane” />
<conposi te: acti onSource nanme="1ogi nEvent” />
<conposi te: acti onSource nanme="al | Event s”
targets="1ogi nEvent, cancel Event” />
<composite:interface>

The list of attached object targets would consist of instances of implementations of the following interfaces from
the package j avax. f aces. webapp. vdl

| 3-42 JavaServer Faces Specification « June 2009

i. EditableValueHolderAttachedObjectTarget
ii. ActionSource2AttachedObjectTarget

iii. ActionSource2AttachedObjectTarget

« A Val ueExpr essi on that evaluates to the component type of the composite component. By default this is
"j avax. f aces. Nam ngCont ai ner " but the composite component page author can change this, or provide a
script-based Ul Conponent implementation that is required to implement Narmi ngCont ai ner.

This Val ueExpr essi on must be exposed in the value set of the composite component BeanDescr i pt or
under the key Ul Conponent . COVPOSI TE_COVPONENT_TYPE_KEY.

« A Map<String, PropertyDescri ptor> representing the facets declared by the composite component
author for use by the page author.

This Map must be exposed in the value set of the composite component BeanDescriptor under the key
U Conponent . FACETS_KEY.

= Any attributes declared by the composite component author using <conposi te: attri bute/ > elements must
be exposed in the array of PropertyDescri pt or s returned from get PropertyDescri pt ors() on the
composite component Beanl nf 0.

For each such attribute, for any St ri ng or bool ean valued JavaBeans properties on the interface
PropertyDescri pt or (and its superinterfaces) that are also given as attributes on a
<composite:attribute/ > element, those properties must be exposed as properties on the
PropertyDescri pt or for that markup element. Any additional attributes on <comnposi te: attri bute/ >
are exposed as attributes accessible from the get Val ue() and at t ri but eNames() methods on
PropertyDescri pt or. The return type from getValue() must be a Val ueExpr essi on.

3.7

3.7.1

Component Behavior Model

This section describes the facilities for adding Behavior attached objects to JavaServer Faces components.

Overview

JSF supports a mechanism for enhancing components with additional behaviors that are not explicitly defined by the
component author.

At the root of the behavior model is he Behavior interface. This interface serves as a supertype for additional behavior
contracts. The ClientBehavior interface extends the Behavior interface by providing a contract for defining reusable
scripts that can be attached to any component that implements the ClientBehaviorHolder interface. The
ClientBehaviorHolder interface defines the set of attach points, or "events", to which a ClientBehavior may be attached.
For example, an "AlertBehavior" implementation might display a JavaScript alert when attached to a component and
activated by the end user.

While client behaviors typically add client-side capabilities, they are not limited to client. Client behaviors can also
participate in the JSF request processing lifecycle. JSF's AjaxBehavior is a good example of such a cross-tier behavior.
The AjaxBehavior both triggers an Ajax request from the client and also delivers AjaxBehaviorEvents to listeners on the
server.

The standard HTML components provided by JSF are all client behavior-ready. That is, all of the standard HTML
components implement the ClientBehaviorHolder interface and allow client behaviors to be attached to well defined
events. .

Chapter 3 User Interface Component Model 3-43

3.7.2

3.7.3

3.7.4

Behavior Interface

The Behavior interface is the root of the component behavior model. It defines a single method to enable generic
behavior event delivery.

public void broadcast (Behavi or Event event)
t hr ows Abort Processi ngExcepti on

This method is called by UIComponent implementations to re-broadcast behavior events that were queued by by calling
UIComponent.queueEvent.

BehaviorBase

The BehaviorBase abstract class implements the broadcast method from the Behavior interface. BehaviorBase also
implements the PartialStateHolder interface (see Section 3.2.5 “PartialStateHolder”). It also provides behavior event
listener registration methods.

public void broadcast (Behavi or Event event)
t hr ows Abort Processi ngExcepti on

This method delivers the BehaviorEvent to listeners that were registered via addBehaviorListener.

The following methods are provided for add and removing BehaviorListeners..

protected voi d addBehavi or Li st ener (Behavi or Li stener |istener)

protected voi d renoveBehavi or Li st ener (Behavi orLi stener |istener);

The Client Behavior Contract

The Cl i ent Behavi or interface extends the Behavi or interface and lays the foundation on which behavior authors
can define custom script producing behaviors. The logic for producing these scripts is defined in the get Scri pt ()
method.

public String getScript(BehaviorContext behavi or Cont ext)

This method returns a String that is an executable script that can be attached to a client side event handler. The
Behavi or Cont ext argument contains information that may be useful for get Scri pt implementations.

In addition to client side functionality, client behaviors can also post back to the server and participate in the request
processing lifecycle. ..

public void decode(FacesCont ext context, U Conponent component)

| 3-44 JavaServer Faces Specification « June 2009

3.7.5

3.7.6

3.7.7

3.7.8

This method can perform request decoding and queue server side events..].

public Set<C ientBehaviorHi nt> get H nts()

This method provides information about the client behavior implementation that may be useful to components and
renderers that interact with the client behavior.

Refer to the javadocs for these methods for more details.

ClientBehavorHolder

Components that support client behaviors must implement the ClientBehaviorHolder interface. Refer to Section 3.2.9
“ClientBehaviorHolder” for more details.

ClientBehaviorRenderer

Client behaviors may implement script generation and decoding in a client behavior class or delegate to a
ClientBehaviorRenderer. Refer to Section 8.3 “ClientBehaviorRenderer” for more specifics.

ClientBehaviorContext

The specification provides a O i ent Behavi or Cont ext that contains information that may be used at script rendering
time. Specifically it includes:

= FacesContext

= UlComponent that the current behavior is attached to

= The name of the event that the behavior is associated with

= The identifier of the source - this may correspond to the identifier of the source of the behavior

= A collection of parameters that submitting behaviors should include when posting back to the server

The d i ent Behavi or Cont ext is created with the use of this static method:

public static dientBehavior Cont ext

creat eC i ent Behavi or Cont ext (FacesCont ext cont ext, U Conponent
conponent, String eventNane, tring

sour cel d, Col | ecti on<d i ent Behavi or Cont ext . Par anet er > par anet ers)

This method must throw a NullPointerException if cont ext, component or event Nane is null.

ClientBehaviorHint

The Cl i ent Behavi or H nt enum is used to convey information about the client behavior implementation. Currently,
only one hint is provided.

SUBM TTI NG

This hint indicates that a client behavior implementation posts back to the server.

Chapter 3 User Interface Component Model 3-45

3.7.9

3.7.10

3.7.10.1

ClientBehaviorBase

Cl i ent Behavi or Base is an extension of Behavi or Base that implements the Cl i ent Behavi or interface. It It
is a convenience class that contains default implementations for the methods in Cl i ent Behavi or plus additional
methods::

public String getScript(BehaviorContext behavi or Cont ext)

The default implementation calls getRenderer to retrieve the Cl i ent Behavi or Renderer. If a
Cl i ent Behavi or Render er is found, it is used to obtain the script. If no Cl i ent Behavi or Render er is found,
this method returns null.

public void decode(FacesCont ext context, U Conponent comnponent)

The default implementation calls getRenderer to retrieve the Cl i ent Behavi or Renderer. If a
Cl i ent Behavi or Render er is found, it is used to perform decoding. If no C i ent Behavi or Render er is found,
no decoding is performed.

public Set<CientBehaviorHi nt> get H nts()

The default implementation returns an empty set

public String getRendererType();

This method identifies the Cl i ent Behavi or Render er type. By default, no Cl i ent Behavi or Render er type is
provided. Subclasses should either override this method to return a valid type or override the getScript and decode
methods if a Cl i ent Behavi or Render er is not available..

protected dientBehavi or Renderer get Render er (FacesCont ext
context);

This method returns the C i ent Behavi or Render er instance that is associated with this O i ent Behavi or. It
uses the renderer type returned from getRender er Type() to look up the renderer on the RenderKit using
Render Ki t . get O i ent Behavi or Render er.

Behavior Event / Listener Model

The behavior event / listener model is an extension of the JSF event / listener model as described in Section 3.4 “Event
and Listener Model”. Behavi or Hol der components are responsible for broadcasting Behavi or Event s to
behavi ors.

Event Classes

Behaviors can broadcast events in the same way that UIComponents can broadcast events. At the root of the behavior
event hierarchy is Behavi or Event that extends j avax. f aces. event . FacesEvent. All events that are
broadcast by JSF behaviors must extend the j avax. f aces. event . Behavi or Event abstract base class. The
parameter list for the constructor(s) of this event class must include a Ul Conponent , which identifies the component
from which the event will be broadcast to interested listeners, and a Behavi or which identifies the behavior associated

| 3-46 JavaServer Faces Specification « June 2009

3.7.10.2

3.7.10.3

3.7.11

3.7.11.1

3.7.11.2

with the component. The source component can be retrieved from the event object itself by calling get Conponent
and the behavior can be retrieved by calling get Behavi or. Additional constructor parameters and/or properties on the
event class can be used to relay additional information about the event.

In conformance to the naming patterns defined in the JavaBeans Specification, event classes typically have a class name
that ends with Event . The following method is available to determine the Behavi or for the event (in addition to the
other methods inherited from j avax. f aces. event . FacesEvent :

publ i ¢ Behavi or get Behavi or ()

Listener Classes

For each event type that may be emitted, a corresponding listener interface must be created, which extends the

j avax. f aces. event . Behavi or Li st ener interface. Behavi or Li st ener extends from

j avax. faces. event . FacesLi st ener. The method signature(s) defined by the listener interface must take a
single parameter, an instance of the event class for which this listener is being created. A listener implementation class
will implement one or more of these listener interfaces, along with the event handling method(s) specified by those
interfaces. The event handling methods will be called during event broadcast, one per event.

In conformance to the naming patterns defined in the JavaBeans Specification, listener interfaces have a class name
based on the class name of the event being listened to, but with the word Li st ener replacing the trailing Event of the
event class name (thus, the listener for a FOoOEvent would be a FooLi st ener). It is recommended that application
event listener interfaces follow this naming pattern as well.

Listener Registration

Behavi or Li st ener registration follows the same conventions as outlined in Section 3.7.10.3 “Listener
Registration”.

Ajax Behavior

AjaxBehavior

The specification defines a single concrete Cl i ent Behavi or implementation:

j avax. f aces. conponent . behavi or. A axBehavi or. This class extends

j avax. f aces. conponent . behavi or. i ent Behavi or Base. The presence of this behavior on a component
causes the rendering of JavaScript that will produce an Ajax request to the server using the JavaScript API outlined in
Section “JavaScript API”. This behavior may also broadcast j avax. f aces. event . Aj axBehavi or Events to
registered j avax. f aces. event . Aj axBehavi or Li st ener implementations. Refer to the javadocs for more
details about Aj axBehavi or. [Pl-start-ajaxbehavior]This behavior must define the behavior id
“javax.faces.behavior.Ajax”. The renderer type must also be “javax.faces.behavior.Ajax”.[P1-end]

Ajax Behavior Event / Listener Model

Corresponding to the standard behavior event classes described in the previous section the specification supports an
event listener model for broadcasting and handling Aj axBehavi or events.

Chapter 3 User Interface Component Model 3-47

3.7.12

3.7.13

Jjavax.faces.event.AjaxBehaviorEvent

This event type extends from j avax. f aces. event . Behavi or Event and it is broadcast from an

Aj axBehavi or. This class follows the standard JSF event / listener model, incorporating the usual methods as
outlined in Section 3.4 “Event and Listener Model”. This class is responsible for invoking the method implementation of
j avax. f aces. event . Aj axBehavi or Li st ener. processAj axBehavi or. Refer to the javadocs for more
complete details about this class.

javax.faces.event.AjaxBehaviorListener

This listener type extends from j avax. f aces. event . Behavi or Li st ener and it is invoked in response to
Aj axBehavi or Event s.

public void processA axBehavi or (Aj axBehavi or Event event)

Aj axBehavi or Li st ener implementations implement this method to provide server side functionality in response to
Aj axBehavi or Event's. See the javadocs for more details about this class.

Adding Behavior To Components

Using the O i ent Behavi or Hol der interface (Section 3.2.9 “d i ent Behavi or Hol der”)d i ent Behavi or

instances can be added to components. For C i ent Behavi or implementations that extend Ul Conponent Base, the
minimal requirement is to override get Event Nanes() to return a non-empty collection of the event names exposed

by the C i ent Behavi or Hol der. A optional default event name may be specified as well. For example:

Here’s an example code snippet from one of the Html components:

public class Htm CommandButton extends
j avax. faces. conponent . U Comrand i npl enents O i ent Behavi or Hol der {

private static final Collection<String> EVENT_NAMES =
Col | ecti ons. unnodi fi abl eCol | ecti on(Arrays. asLi st ("blur", "change"
,"click","action",...));

public Collection<String> get Event Nanes() {
return EVENT_NAMES; }

public String getDefaultEventName() ({
return "action"; }

Users of the component will be able to attach C i ent Behavi or instances to any of the event names specified by the
get Event Nanmes() implementation by calling Cl i ent Behavi or Hol der . addBehavi or (event Nane,
cl i ent Behavi or).

Behavior Registration

JSF provides methods for registering Behavi or implementations and these methods are similar to the methods used to
register converters and validators. Refer to Section 7.1.11 “Object Factories” for the specifics about these methods.

| 3-48 JavaServer Faces Specification « June 2009

3.7.13.1

3.7.13.2

XML Registration

JSF provides the usual faces-config.xml registration of custom component behavior implementations.

<behavi or >
<behavi or -i d>cust om behavi or. G eet </ behavi or-i d>

</ behavi or >

<behavi or - cl ass>gr eet . G eet Behavi or </ behavi or - cl ass>

Registration By Annotation

JSF provides the @acesBehavi or annotation for registering custom behavior implementations.

@-acesBehavi or (val ue="cust om behavi or. Geet")
Serializable {

public class G eetBehavi or extends Behavi orBase i npl ements

Chapter 3 User Interface Component Model

3-49

3-50 JavaServer Faces Specification + June 2009

Standard User Interface Components

In addition to the abstract base class U Conponent and the abstract base class Ul Conponent Base, described in the
previous chapter, JSF provides a number of concrete user interface component implementation classes that cover the
most common requirements. In addition, component writers will typically create new components by subclassing one of
the standard component classes (or the Ul Conponent Base class). It is anticipated that the number of standard
component classes will grow in future versions of the JavaServer Faces specification.

Each of these classes defines the render-independent characteristics of the corresponding component as JavaBeans
component properties. Some of these properties may be value expressions that indirectly point to values related to the
current request, or to the properties of model data objects that are accessible through request-scope, session-scope, or
application-scope attributes. In addition, the r ender er Type property of each concrete implementation class is set to a
defined value, indicating that decoding and encoding for this component will (by default) be delegated to the
corresponding Render er.

4.1

Standard User Interface Components

This section documents the features and functionality of the standard Ul Conponent classes and implementations that
are included in JavaServer Faces.

[P1-start-componentConstant] The implementation for each standard Ul Conponent class must specify two public static
final String constant values:

= COMPONENT_TYPE -- The standard component type identifier under which the corresponding component class is
registered with the Appl i cat i on object for this application. This value may be used as a parameter to the
cr eat eConponent () method.

» COMPONENT_FAM LY -- The standard component family identifier used to select an appropriate Renderer for this
component.[P1-end]

For all render-independent properties in the following sections (except for i d, scope, and var) the value may either be
a literal, or it may come from a value expression. Please see Section 5.1 “Value Expressions” for more information.

The following UML class diagram shows the classes and interfaces in the package j avax. faces. conponent.

Chapter 4 Standard User Interface Components 4-1

FIGURE 4-1

The j avax. f aces. conmponent package

== interface interface ==

== interface interface ==

== interface interface ==

ActionSource StateH older HamingContianer
== interface interface == éll\t A’-’l & /:—\\
ValuveH older 1o i
== interface interface == : ; ! == interface ==
UIComponent W—— [ContextCallback
ﬂ, 1 1 :
! == interface interface == 7 LI
I = 1 1
<= interface interface == | | Action$ ource2 ! ton
EditableWalueH older ! !
: Ul ComponentB ase 1 1 :
K nr
‘{; I y 1 1 :
! i 1 1 -
1 1 s ! ! k “
! ' 4 %3 L'% T -
h
I 1 1
| | UG raphic Ul Command UlData UlHamingContainer UIForm
1 I
I I
1 I
I 1
f ' UIPane UlSelectitem UlSelectitems UlParameter
1 1
| I
1 1
I I
I L
| U0 utput Ul views oot UlMes=sage UlMes=sages UIColumn
|
I
|
I
| UlSelectOne
1
Ulinput ﬂ
i VIS ecthany

UliSelectBoolean

| 4-2

JavaServer Faces Specification + June 2009

4.1.1

4.1.1.1

4.1.1.2

4.1.1.3

4.1.1.4

UIColumn

Ul Col umm (extends Ul Conponent Base) is a component that represents a single column of data with a parent

Ul Dat a component. The child components of a Ul Col urm will be processed once for each row in the data managed by

the parent Ul Dat a.

Component Type

The standard component type for Ul Col urm components is “javax.faces.Column”.

Properties

Ul Col umm adds the following render-independent properties:

Name Access Type Description

f oot er RW Ul Conponent Convenience methods to get and set the “footer”
facet for this component.

header RW UlIComponent Convenience methods to get and set the “header”
facet for this component.

[P1-start-ui col utm] Ul Col umm specializes the behavior of render-independent properties inherited from the
parent class as follows:

= The default value of the f ami | y property must be set to “javax.faces.Column”.

= The default value of the r ender er Type property must be set to nul | .[P1-end]

Methods

Ul Col unm adds no new processing methods.

Events

Ul Col umm adds no new event handling methods.

Chapter 4 Standard User Interface Components

4-3

4.1.2

4.1.2.1

4.1.2.2

4.1.2.3

4.1.2.4

UICommand

Ul Command (extends Ul Conponent Base; implements Act i onSour ce) is a control which, when activated by the
user, triggers an application-specific “command” or “action.” Such a component is typically rendered as a push button, a
menu item, or a hyperlink.

Component Type

The standard component type for U Command components is “javax.faces.Command”.

Properties

Ul Command adds the following render-independent properties.

Name Access Type Description
val ue RW oj ect The value of this component, normally used as a
label.

See Section 3.2.1 “ActionSource” for information about properties introduced by the implemented classes.

[P1-start-ui command] U Command components specialize the behavior of render-independent properties inherited
from the parent class as follows:

= The default value of the f ami | y property must be set to “javax.faces.Command”.

» The default value of the r ender er Type property must be set to “javax.faces.Button”.[P1-end]

Methods

Ul Command adds no new processing methods. See Section 3.2.1 “ActionSource” for information about methods
introduced by the implemented classes.

Events

U Command adds no new event processing methods. See Section 3.2.1 “ActionSource” for information about event
handling introduced by the implemented classes.

| 4-4 JavaServer Faces Specification « June 2009

4.1.3

4.1.3.1

4.1.3.2

UlData

Ul Dat a (extends Ul Conponent Base; implements Nam ngCont ai er) is a component that represents a data
binding to a collection of data objects represented by a DataModel instance (see Section 4.2.1 “DataModel”). Only
children of type Ul Col urm should be processed by renderers associated with this component.

Component Type

The standard component type for Ul Dat a components is “javax.faces.Data”

Properties

Ul Dat a adds the following render-independent properties.

Name

Access

Type

Description

dat aModel

first

footer

header

rowCount

rowAvailable

rowData

rowIndex

Tows

value

var

protected
RW

RW

RW

RW

RO

RO

RO

RW

RW

RW

RW

Dat aMbdel

int

Ul Conponent

UIComponent

int

boolean

Object

int

int

Object

String

The internal value representation of the Ul Dat a
instance. Subclasses might write to this property if
they want to restore the internal model during the
Restore View Phase or if they want to explicitly
refresh the model for the Render Response phase.

Zero-relative row number of the first row in the
underlying data model to be displayed, or zero to
start at the beginning of the data model.

Convenience methods to get and set the “footer”
facet for this component.

Convenience methods to get and set the “header”
facet for this component.

The number of rows in the underlying Dat aMbdel ,
which can be -1 if the number of rows is unknown.

Return t r ue if there is row data available for the
currently specified r o ndex; else return f al se.

The data object representing the data for the
currently selected r owl ndex value.

Zero-relative index of the row currently being
accessed in the underlying Dat aMbdel , or -1 for
no current row. See below for further information.

The number of rows (starting with the one identified
by the fi r st property) to be displayed, or zero to
display the entire set of available rows.

The Dat aMbdel instance representing the data to
which this component is bound, or a collection of
data for which a Dat aMbdel instance is
synthesized. See below for more information.

The request-scope attribute (if any) under which the
data object for the current row will be exposed when
iterating.

See Section 3.2.3 “NamingContainer” for information about properties introduced by the implemented classes.

[P1-start-ui data] U Dat a specializes the behavior of render-independent properties inherited from the parent
component as follows:

Chapter 4 Standard User Interface Components 4-5

4.1.3.3

4.1.3.4

= The default value of the f ami | y property must be set to “javax.faces.Data”.
= The default value of the r ender er Type property must be set to “j avax. f aces. Tabl e”.[Pl-end]

The current value identified by the val ue property is normally of type Dat aModel . [P1-start-uidataModel|[However, a
Dat aMbdel wrapper instance must automatically be provided by the JSF implementation if the current value is of one
of the following types:

= java.util.List

= Array of j ava. util . Qbj ect

= java. sql. Resul t Set (which therefore also supports j avax. sgl . RowSet)

= javax.servlet.jsp.jstl.sqgl.Result

= Any other Java object is wrapped by a Dat aMbdel instance with a single row.[P1-end]

Convenience implementations of Dat abdel are provided in the j avax. f aces. nbdel package for each of the
above (see Section 4.2.1.4 “Concrete Implementations”), and must be used by the Ul Dat a component to create the
required Dat aMbdel wrapper.

Methods

Ul Dat a adds no new processing methods. However, the getDataModel() method is now protected, so implementations
have access to the underlying data model. See Section 3.2.3 “NamingContainer” for information about methods
introduced by the implemented classes.

UlData specializes the behavior of the get C i ent | d() method inherited from its parent, in order to create a client
identifier that includes the current rowIndex value (if it is not -1). Because Ul Dat a is a Nam ngCont ai ner, this
makes it possible for rendered client identifiers of child components to be row-specific.

Ul Dat a specializes the behavior of the queueEvent () method inherited from its parent, to wrap the specified event
(bubbled up from a child component) in a private wrapper containing the current rowIndex value, so that this rowIndex
can be reset when the event is later broadcast.

Ul Dat a specializes the behavior of the br oadcast () method to unwrap the private wrapper (if this event was
wrapped), and call set Row ndex() to re-establish the context in which the event was queued, followed by delivery of
the event.

[P1-start-ui dat aDecode] Ul Dat a specializes the behavior of the pr ocessDecodes(),
processVal i dat ors(), and pr ocessUpdat es() methods inherited from its parent as follows:

» For each of these methods, the Ul Dat a implementation must iterate over each row in the underlying data model,
starting with the row identified by the fi r st property, for the number of rows indicated by the r ows property, by
calling the set Row ndex() method.

= When iteration is complete, set the r owl ndex property of this component, and of the underlying Dat aMbdel , to
zero, and remove any request attribute exposed via the var property.[P1-end]

Ul Dat a specializes the behavior of i nvokeOnConponent () inherited from Ul Conponent Base to examine the
argument cl i ent | d and extract the r ow ndex, if any, and position the data properly before proceeding to locate the
component and invoke the callback. Upon normal or exception return from the callback the data must be repositioned to
match how it was before invoking the callback. Please see the javadocs for Ul Dat a. i nvokeOnConponent () for
more details.

Events

Ul Dat a adds no new event handling methods. SeeSection 3.2.3 “NamingContainer” for information about event
handling introduced by the implemented classes.

| 4-6 JavaServer Faces Specification < June 2009

4.1.4

4.14.1

4.14.2

4.14.3

UlIForm

Ul For m(extends Ul Conponent Base; implements Nam ngCont ai ner) is a component that represents an input
form to be presented to the user, and whose child components (among other things) represent the input fields to be
included when the form is submitted.

[P1-start-uiformEncodeEnd]The encodeEnd() method of the renderer for Ul For mmust call
Vi ewHandl er. wri teStat e() before writing out the markup for the closing tag of the form.[P1-end]This allows the
state for multiple forms to be saved.

Component Type

The standard component type for Ul For mcomponents is “javax.faces.For ni.

Properties

Ul For madds the following render-independent properties.

Name Access Type Description

prependld RW bool ean If true, this Ul For minstance does allow its id to be
pre-pendend to its descendent’s id during the
generation of clientlds for the descendents. The
default value of this property is t r ue.

[P1-start-uiforn U For mspecializes the behavior of render-independent properties inherited from the parent
component as follows:

= The default value of the f ami | y property must be set to “j avax. f aces. For nt.
= The default value of the r ender er Type property must be set to “j avax. f aces. For ni’.[P1-end]

Methods.

public bool ean isSubnmitted();
public void setSubnitted(bool ean subm tted)

[P1-start-uiform-setSubmitted]The set Submi tt ed() method of each Ul For minstance in the view must be called
during the Apply Request Values phase of the request processing lifecycle, during the processing performed by the

Ul Conmponent . decode() method. If this Ul For minstance represents the form actually being submitted on this
request, the parameter must be set to t r ue; otherwise, it must be set to f al se.[P1-end] The standard implementation of
Ul For mdelegates the responsibility for calling this method to the Render er associated with this instance-

[P1-start-uiform-submitted]The value of a Ul For mi s submi t t ed property must not be saved as part of its state.[P1-

public void processDecodes(FacesCont ext context);

end]

Chapter 4 Standard User Interface Components 4-7

Override Ul Conponent . pr ocessDecodes() to ensure that the subm tt ed property is set for this component. If
the submi t t ed property decodes to false, do not process the children and return immediately.

public void processVal i dators(FacesContext context);
public void processUpdat es(FacesCont ext context);

Override processVal i dat or s() and pr ocessUpdat es() to ensure that the children of this Ul For minstance are
only processed if i sSubmi tt ed() returns true.

public void saveStat e(FacesCont ext context);

[P1-start-uiformSaveState]The saveSt at e() method of UIForm must call set Subni tt ed(f al se) before calling
super. saveSt at e() as an extra precaution to ensure the submitted state is not persisted across requests.[P1-end]

protected String getContainerdientld(FacesContext context);

[P1-start-uiformPrependld]Override the parent method to ensure that children of this Ul For minstance in the view have
the form’s cl i ent | d prepended to their cl i ent | ds if and only if the form’s pr ependl d property is t r ue.[P1-end]

4.1.4.4 Events

Ul For madds no new event handling methods.

| 4-8 JavaServer Faces Specification « June 2009

4.1.5 UIGraphic

Ul G aphi ¢ (extends Ul Conponent Base) is a component that displays a graphical image to the user. The user cannot
manipulate this component; it is for display purposes only.

4.1.5.1 Component Type

The standard component type for Ul Gr aphi ¢ components is “javax.faces.Gr aphi c”.

4.1.5.2 Properties

The following render-independent properties are added by the UIGraphic component:

Name Access Type Description

url RW String The URL of the image to be displayed. If this URL
begins with a / character, it is assumed to be
relative to the context path of the current web
application. This property is a typesafe alias for the
val ue property, so that the actual URL to be used
can be acquired via a value expression.

val ue RW oj ect The value of this component, normally used as a
URL.

[P1-start-uigraphic] U G aphi ¢ specializes the behavior of render-independent properties inherited from the
parent component as follows:

= The default value of the f ami | y property must be set to “javax.faces.Graphic”.
= The default value of the r ender er Type property must be set to “j avax. f aces. | nage”.[Pl-end]

4.1.5.3 Methods

Ul Gr aphi ¢ adds no new processing methods.

4.1.5.4 Events

U G aphi ¢ does not originate any standard events.

Chapter 4 Standard User Interface Components 4-9

4.1.6

4.1.6.1

4.1.6.2

Ullnput

Ul | nput (extends Ul Qut put , implements Edi t abl eVal ueHol der) is a component that both displays the current
value of the component to the user (as Ul Qut put components do), and processes request parameters on the subsequent
request that need to be decoded.

Component Type

The standard component type for Ul | nput components is “j avax. f aces. | nput ”.

Properties

Ul I nput adds the following renderer independent properties.:

Name Access Type Description
requi redMess RW String ValueExpression enabled property. If non-null, this
age property is used as the sumary and det ai |

strings of the FacesMessage that is queued on the
FacesCont ext instead of the default message for
the required validaiton failure. Note that the
message is fully internationalizable via either the

f : 1 oadBundl e tag or via Resour ceBundl| e
access from the EL.

converterMes RW String ValueExpression enabled property. If non-null, this
sage property is used as the sumary and det ai |

strings of the FacesMessage that is queued on the
FacesCont ext instead of the default message for
conversion failure. Note that the message is fully
internationalizable via either the f : | oadBundl e
tag or via Resour ceBundl| e access from the EL.

val i dator Mes RW String ValueExpression enabled property. If non-null, this
sage property is used as the summary and det ai |

strings of the FacesMessage that is queued on the
FacesCont ext instead of the default message for
validation failure. Note that the message is fully
internationalizable via either the f : | oadBundl e
tag or via Resour ceBundl| e access from the EL.

See Section 3.2.7 “EditableValueHolder” for information about properties introduced by the implemented interfaces.

[P1-start-uiinput]UlInput specializes the behavior of render-independent properties inherited from the parent component
as follows:

The default value of the f ami | y property must be set to “j avax. f aces. | nput ”.
The default value of the r ender er Type property must be set to “j avax. f aces. Text ”.

The Convert er specified by the convert er property (if any) must also be used to perform String->Object
conversions during decoding.[P1-end]

If the val ue property has an associated Val ueExpr essi on, the set Val ue() method of that
Val ueExpr essi on will be called during the Update Model Values phase of the request processing lifecycle to push
the local value of the component back to the corresponding model bean property.

| 4-10 JavaServer Faces Specification + June 2009

4.1.6.3 Methods

The following method is used during the Update Model Values phase of the request processing lifecycle, to push the
converted (if necessary) and validated (if necessary) local value of this component back to the corresponding model bean

property.

public voi d updat eMbdel (FacesCont ext context);

The following method is over-ridden from Ul Conponent :

public void broadcast(FacesEvent event);

In addition to the default Ul Conponent . br oadcast (j avax. f aces. event. FacesEvent) processing, pass the
Val ueChangeEvent being broadcast to the method referenced by the val ueChangeli st ener property (if any).

public void validat e(FacesCont ext context);

Perform the algorithm described in the javadoc to validate the local value of this Ul | nput ..

public void resetVal ue();

Perform the algorithm described in the javadoc to reset this Ul | nput to the state where it has no local value. This
method does not touch the value expresson associated with the “val ue” property.

4.1.6.4 Events

All events are described in Section 3.2.7 “EditableValueHolder”.

Chapter 4 Standard User Interface Components 4-11

4.1.7

4.1.7.1

4.1.7.2

4.1.7.3

4.1.7.4

UlMessage

U Message (extends Ul Conponent Base) encapsulates the rendering of error message(s) related to a specified input
component.

Component Type

The standard component type for Ul Message components is “j avax. f aces. Message”.

Properties

The following render-independent properties are added by the UIMessage component:

Name Access Type Description

for RW String Identifier of the component for which to render error
messages. If this component is within the same
NamingContainer as the target component, this must
be the component identifier. Otherwise, it must be
an absolute component identifier (starting with “:”).
See the UIComponent.findComponent() Javadocs
for more information.

showDetail ~ RW boolean Flag indicating whether the “detail” property of
messages for the specified component should be
rendered. Default value is “true”.

showSumma RW boolean Flag indicating whether the “summary” property of
ry messages for the specified component should be
rendered. Default value is “false”.

[P1-start-ui nessage] Ul Message specializes the behavior of render-independent properties inherited from the
parent component as follows:

= The default value of the f ami | y property must be set to “j avax. f aces. Message”.
» The default value of the r ender er Type property must be set to “j avax. f aces. Message”.[Pl-end]

Methods.

Ul Message adds no new processing methods.

Events

Ul Message adds no new event handling methods.

| 4-12 JavaServer Faces Specification + June 2009

4.1.8

4.1.8.1

4.1.8.2

4.1.8.3

4.1.8.4

UlMessages

Ul Message (extends Ul Conmponent Base) encapsulates the rendering of error message(s) not related to a specified

input component, or all enqueued messages.

Component Type

The standard component type for Ul Message components is “j avax. f aces. Messages”.

Properties

The following render-independent properties are added by the UIMessages component:

Name Access Type Description

gl obal On RW bool ean

Flag indicating whether only messages not

ly associated with any specific component should be
rendered. If not set, all messages will be rendered.

Default value is “false”.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should be
rendered. Default value is “false”.

showSumma RW boolean Flag indicating whether the “summary” property of

ry messages for the specified component should be

rendered. Default value is “true”.

[P1- st at - ui messages] Ul Messages specializes the behavior of render-independent properties inherited from the

parent component as follows:

= The default value of the f ami | y property must be set to “j avax. f aces. Messages”.

= The default value of the r ender er Type property must be set to “j avax. f aces. Messages”.[Pl-end]

Methods.

Ul Messages adds no new processing methods.

Events

U Messages adds no new event handling methods.

Chapter 4 Standard User Interface Components

4-13

4.1.9

4.1.9.1

4.1.9.2

4.19.3

4.19.4

UIOutcomeTarget

UlIOutcomeTarget (Ul Qut put) is a component that has a value and an outcome, either which may optionally be
retrieved from a model tier bean via a value expression (see Section 5.1 “Value Expressions”), and is displayed to the
user as a hyperlink, appearing in the form of a link or a button. The user cannot modify the value of the hyperlink, as it's
for display purposes only. The target URL of the hyperlink is derived by passing the outcome to the

Confi gurationNavi gati onHandl er to retrieve the matching Navi gat i onCase and then using the

Vi ewHandl er to translate the Navi gat i onCase into an action URL. When the client activates the hyperlink,
typically by clicking it, the target URL is retrieved using a non-faces request and the response is rendered.

This component introduces a scenario known as "preemptive navigation". The navigation case is resolved during the
Render Response phase, before the client activates the link (and may never activate the link). The predetermined
navigation is pursued after the client activates the link. In contrast, the UICommand components resolve and execute the
navigation at once, after the Invoke Application phase.

The Ul Qut coneTar get component allows the developer to leverage the navigation model while at the same time
being able to generate bookmarkable, non-faces requests to be included in the response.

Component Type

The standard component type for UIOutcomeTarget is "javax.faces.OutcomeTarget".

Properties

The following render-independent properties are added by thec component:

Nanme Access Type

CQut cone RwW String The | ogi cal outcone that is used
to resol ve a Navi gati onCase whi ch
inturnis used to build the
target URL of this conponent.
Default value is the current view
I D.

i ncl udePagePar ans RwW bool ean Fl ag i ndi cati ng whet her the page
parameters shoul d be appended to
the query string of the target
URL. Default value is "fal se".

[P1-start-ui out conmet ar get] UlOutcomeTarget specializes the behavior of render-independent properties
inherited from the parent component as follows:

= The default value of the family property must be set to "javax.faces.UIOutcomeTarget"

s The default value of the rendererType property must be set to "javax.faces.Link" [P1- end]

Methods

The UlOutcomeTarget adds no event handling methods.

Events

The UIOutcomeTarget adds no event handling methods.

| 4-14 JavaServer Faces Specification + June 2009

4.1.10 UIOutput

Ul Qut put (extends Ul Conponent Base; implements Val ueHol der) is a component that has a value, optionally
retrieved from a model tier bean via a value expression (see Section 5.1 “Value Expressions”), that is displayed to the
user. The user cannot directly modify the rendered value; it is for display purposes only:

4.1.10.1 Component Type

The standard component type for Ul Qut put components is “javax.faces.Qut put .

4.1.10.2 Properties

Ul Qut put adds no new render-independent properties. See Section 3.2.6 “ValueHolder” for information about
properties introduced by the implemented classes.

[P1-start-uioutput] U Qut put specializes the behavior of render-independent properties inherited from the
parent component as follows:

= The default value of the f ami | y property must be set to “javax.faces.Output”.
» The default value of the r ender er Type property must be set to “javax.faces.Text”.[P1-end]

4.1.10.3 Methods

Ul Qut put adds no new processing methods. See Section 3.2.6 “ValueHolder” for information about methods
introduced by the implemented interfaces.

4.1.104 Events

UlIOutput does not originate any standard events. See Section 3.2.6 “ValueHolder” for information about events
introduced by the implemented interfaces.

Chapter 4 Standard User Interface Components 4-15

4.1.11

4.1.11.1

4.1.11.2

4.1.11.3

4.1.11.4

UIPanel

Ul Panel (extends Ul Conponent Base) is a component that manages the layout of its child components.

Component Type

The standard component type for Ul Panel components is “j avax. f aces. Panel .

Properties

Ul Panel adds no new render-independent properties.

[P1-start-ui panel] Ul Panel specializes the behavior of render-independent properties inherited from the parent
component as follows:

= The default value of the f ami | y property must be set to “j avax. f aces. Panel ™.
= The default value of the r ender er Type property must be set to nul | .[P1-end]

Methods

Ul Panel adds no new processing methods.

Events

Ul Panel does not originate any standard events

| 4-16 JavaServer Faces Specification + June 2009

4.1.12

4.1.12.1

4.1.12.2

4.1.12.3

4.1.12.4

UlIParameter
Ul Par anet er (extends Ul Conmponent Base is a component that represents an optionally named configuration

parameter that affects the rendering of its parent component. Ul Par anet er components do not generally have
rendering behavior of their own.

Component Type

The standard component type for Ul Par amet er components is “j avax. f aces. Par anet er ™.

Properties

The following render-independent properties are added by the Ul Par anet er component:

Name Access Type Description
name RW String The optional name for this parameter.
value RW Object The value for this parameter.

[P1-start-ui paramneter] U Paranet er specializes the behavior of render-independent properties inherited from
the parent component as follows:

= The default value of the f ami | y property must be set to “javax.faces.Parameter”.

= The default value of the r ender er Type property must be set to nul | .[P1-end]

Methods

Ul Par anet er adds no new processing methods.

Events

Ul Par anet er does not originate any standard events

Chapter 4 Standard User Interface Components 4-17

4.1.13 UlSelectBoolean

Ul Sel ect Bool ean (extends Ul | nput) is a component that represents a single boolean (t r ue or f al se) value. It is
most commonly rendered as a checkbox.

4.1.13.1 Component Type

The standard component type for Ul Sel ect Bool ean components is “javax.faces.Sel ect Bool ean”.

4.1.13.2 Properties

The following render-independent properties are added by the Ul Sel ect Bool ean component:

Name Access Type Description

selected RW bool ean The selected state of this component. This property
is a typesafe alias for the val ue property, so that
the actual state to be used can be acquired via a
value expression.

[P1-start-uisel ect bool ean] Ul Sel ect Bool ean specializes the behavior of render-independent properties
inherited from the parent component as follows:

= The default value of the f ami | y property must be set to “j avax. f aces. Sel ect Bool ean”.
= The default value of the r ender er Type property must be set to “j avax. f aces. Checkbox”.[P1-end]

4.1.13.3 Methods

Ul Sel ect Bool ean adds no new processing methods.

4.1.134 Events

Ul Sel ect Bool ean inherits the ability to send Val ueChangeEvent events from its parent Ul | nput component.

| 4-18 JavaServer Faces Specification + June 2009

4.1.14

4.1.14.1

4.1.14.2

4.1.14.3

4.1.14.4

UlSelectltem

Ul Sel ect | t em(extends Ul Conponent Base) is a component that may be nested inside a Ul Sel ect Many or
Ul Sel ect One component, and represents exactly one Sel ect | t eminstance in the list of available options for that
parent component.

Component Type

The standard component type for Ul Sel ect | t emcomponents is “j avax. f aces. Sel ect1t ent.

Properties

The following render-independent properties are added by the Ul Sel ect | t emcomponent:

Name Access Type Description

itenDesc RW String The optional description of this available selection

ription item. This may be useful for tools.

itemDisable RW boolean Flag indicating that any synthesized Sel ect |t em

d object should have its di sabl ed property set to
true.

itemLabel RW String The localized label that will be presented to the user

for this selection item.

itemValue RW Object The server-side value of this item, of the same basic
data type as the parent component’s value. If the
parent component type’s value is a value expression
that points at a primitive, this value must be of the
corresponding wrapper type.

value RW javax.faces.smod The Sel ect | t eminstance associated with this
el.Selectltem component.

[Pl-start-uiselectiten]U Sel ectltemspecializes the behavior of render-independent properties inherited
= The default value of the f ami | y property must be set to “javax.faces.SelectItem”.
= The default value of the r ender er Type property must be set to nul | .

= If the val ue property is non-nul | , it must contain a Sel ect | t eminstance used to configure the selection item
specified by this component.

= If the val ue property is a value expression, it must point at a Sel ect | t eminstance used to configure the selection
item specified by this component.

= If the val ue property is nul | , and there is no corresponding value expression, the i t enDescri pti on,
i tenDi sabl ed, i t emLabel and it enVal ue properties must be used to construct a new Sel ect|tem
representing the selection item specified by this component.[P1-end]

Methods

Ul Sel ect | t emadds no new processing methods.

Events

Ul Sel ect | t emdoes not originate any standard events.

Chapter 4 Standard User Interface Components 4-19

4.1.15

4.1.15.1

4.1.15.2

4.1.15.3

4.1.15.4

UlSelectltems

Ul Sel ect | t emrs (extends Ul Conponent Base) is a component that may be nested inside a Ul Sel ect Many or
Ul Sel ect One component, and represents zero or more Sel ect | t eminstances for adding selection items to the list of
available options for that parent component.

Component Type

The standard component type for Ul Sel ect | t ens components is “javax.faces.Sel ect | t ens”.

Properties

The following render-independent properties are added by the Ul Sel ect | t ens component:

Name Access Type Description
value RW See below The Sel ect | t eminstances associated with this
component.

[Pl-start-uiselectitens] U Sel ectltens specializes the behavior of render-independent properties inherited
= The default value of the f anmi | y property must be set to “j avax. f aces. Sel ect | tens”.
= The default value of the r ender er Type property must be set to nul | .

= If the val ue property (or the value returned by a value expression associated with the val ue property) is non-null,
it must contain a Sel ect | t embean, an array of Sel ect | t embeans, a Col | ecti on of Sel ect | t embeans, or
a Map, where each map entry is used to construct a Sel ect | t embean with the key as the | abel property of the
bean, and the value as the val ue property of the bean (which must be of the same basic type as the value of the
parent component’s value).[P1-end]

Methods

Ul Sel ect | t ers adds no new processing methods.

Events

Ul Sel ect | t ers does not originate any standard events.

| 4-20 JavaServer Faces Specification + June 2009

4.1.16 UlSelectMany

Ul Sel ect Many (extends Ul | nput) is a component that represents one or more selections from a list of available
options. It is most commonly rendered as a combobox or a series of checkboxes.

4.1.16.1 Component Type

The standard component type for Ul Sel ect Many components is “j avax. f aces. Sel ect Many”.

4.1.16.2 Properties

The following render-independent properties are added by the Ul Sel ect Many component:

Name Access Type Description

selected RW oj ect[] or The selected item values of this component. This

Val ues array of property is a typesafe alias for the val ue property,
primtives so that the actual state to be used can be acquired

via a value expression.

[P1-start-uisel ect many] Ul Sel ect Many specializes the behavior of render-independent properties inherited
from the parent component as follows:

= The default value of the f ami | y property must be set to “j avax. f aces. Sel ect Many”.
= The default value of the r ender er Type property must be set to “j avax. f aces. Li st box”.[P1-end]

= See the class Javadocs for Ul Sel ect Many for additional requirements related to implicit conversions for the val ue
property.

4.1.16.3 Methods

[P1-start-usel ect many-val i dat e] U Sel ect Many must provide a specialized val i dat e() method which
ensures that any decoded values are valid options (from the nested Ul Sel ect 1t emand Ul Sel ect |t ens
children).[P1-end]

4.1.16.4 Events

Ul Sel ect Many inherits the ability to send Val ueChangeEvent events from its parent Ul | nput component.

Chapter 4 Standard User Interface Components 4-21

4.1.17

4.1.17.1

4.1.17.2

4.1.17.3

4.1.17.4

UlSelectOne

Ul Sel ect One (extends Ul | nput) is a component that represents zero or one selection from a list of available options.
It is most commonly rendered as a combobox or a series of radio buttons.

Component Type

The standard component type for Ul Sel ect One components is “j avax. f aces. Sel ect One”.

Properties
Ul Sel ect One adds no new render-independent properties.

[P1-start-uisel ectone] U Sel ect One specializes the behavior of render-independent properties inherited from
the parent component as follows:

= The default value of the f ami | y property must be set to “j avax. f aces. Sel ect One”.
= The default value of the r ender er Type property must be set to “j avax. f aces. Menu”.[Pl-end]

Methods

[P1-start-uisel ectone-validate] U Sel ect One must provide a specialized val i dat e() method which
ensures that any decoded value is a valid option (from the nested Ul Sel ect | t emand Ul Sel ect | t ens children).[P1-
end]

Events

Ul Sel ect One inherits the ability to send Val ueChangeEvent events from its parent Ul | nput component.

| 4-22 JavaServer Faces Specification + June 2009

4.1.18 UlViewParameter

Ul Vi ewPar anet er (extends Ul | nput) is a component that allows the query parameters included in the request by

Ul Qut coniTar get renderers to participate in the lifecycle. Please see the javadocs for the normative speficication of
this component.Events.

Chapter 4 Standard User Interface Components 4-23

4.1.19

4.1.19.1

4.1.19.2

UIViewRoot

Ul Vi ewRoot (extends Ul Conponent Base;) represents the root of the component tree.

Component Type

The standard component type for Ul Vi ewRoot components is “j avax. f aces. Vi ewRoot ”

Properties

The following render-independent properties are added by the Ul Vi ewRoot component:

Name Access Type Description

locale RW java.util.Locale The Locale to be used in
localizing the response for this
view.

renderKitld RW String The id of the Render Ki t used
to render this page.

view d RW String The view identifier for this view.

bef or ePhaselLi stener RW MethodExpressi Met hodExpr essi on that will

on be invoked before all lifecycle

phases except for Restore View.

af t er PhaselLi st ener RW MethodExpressi MethodExpression that will be
on invoked after all lifecycle phases
except for Restore View.

viewMap RW java.util.Map The Map that acts as the interface
to the data store that is the "view
scope".

For an existing view, the | ocal e property may be modified only from the event handling portion of Process Validations
phase through Invoke Application phase, unless it is modified by an Apply Request Values event handler for an

Act i onSour ce or Edi t abl eVal ueHol der component that has its i nmedi at e property set to true (which
therefore causes Process Validations, Update Model Values, and Invoke Application phases to be skipped).

[P1-start-vi ewmrap] The viewMap property is lazily created the first time it is accessed, and it is destroyed when a
different Ul Vi ewRoot instance is installed from a call to FacesCont ext . set Vi ewRoot () . After the Map is
created a Post Const r uct Vi ewapEvent must be published using Ul Vi ewRoot as the event source. Immediately
before the Map is destroyed, a Pr eDest r oyVi ewVapEvent must be published using Ul Vi ewRoot as the event
source. [P1-end]

[P1-start-uiview oot] U Vi ewRoot specializes the behavior of render-independent properties inherited from
the parent component as follows:
= The default value of the f ami | y property must be set to “j avax. f aces. Vi ewRoot ™.

= The default value of the r ender er Type property must be set to nul | .[P1-end]

| 4-24 JavaServer Faces Specification + June 2009

4.1.19.3

4.1.194

Methods

The following methods are used for adding Ul Conponent resources to a target area in the view, and they are also used
for retrieving Ul Conmponent resources from a target area in the view.

public voi d addConponent Resour ce(FacesCont ext cont ext,
Ul Conponent conponent Resour ce);

Add conmponent Resour ce, that is assumed to represent a resource instance, to the current view. A resource instance
is rendered by a resource Render er (such as Scri pt Renderer, Styl esheet Renderer) as described in the
Standard HTML RenderKit. This method will cause the resource to be rendered in the “head” element of the view.

public void addConponent Resour ce(FacesCont ext cont ext,
U Component conponent Resource, String target);

Add conponent Resour ce, that is assumed to represent a resource instance, to the current view at the specified
target location. [Pl-start-addComponentResource] The resource must be added using the algorithm outlined in this
method’s Javadocs.[P1-end]

publi ¢ Li st <U Conponent > get Conponent Resources(String target);

Return a Li st of Ul Conponent instances residing under the facet identified by t ar get. Each Ul Conponent
instance in the Li st represents a resource. [P1-start-getCompRes] The Li st must be formulated in accordance with
this method’s Javadocs. [P1-end]

Ul Vi ewRoot specializes the behavior of the Ul Conponent . queueEvent () method to maintain a list of queued
events that can be transmitted later. It also specializes the behavior of the pr ocessDecodes(),

processVal i dators(), processUpdat es(), and processAppl i cati on() methods to broadcast queued
events to registered listeners. Ul Vi ewRoot clears any remaining events from the event queue in these methods if
responseConpl et e() orrender Response() has been set on the FacesCont ext. Please see Section 2.2.2
“Apply Request Values”, Section 2.2.3 “Process Validations”, Section 2.2.4 “Update Model Values” and Section 2.2.5
“Invoke Application” for more details.

Events

Ul Vi ewRoot is a source of PhaseEvent events, which are emitted when the instance moves through all phases of the
request processing lifecycle except Restore View. This phase cannot emit events from Ul Vi ewRoot because the

Ul Vi ewRoot instance isn’t created when this phase starts. See Section 12.2 “PhaseEvent” and Section 12.3
“PhaseListener”for more details on the event and listener class.

public voi d addPhaselLi st ener (PhaselLi stener |istener);
public void renpvePhaseli st ener (VPhaselLi stener |istener);

publi c Li st <PhaseLi stener> get PhaseLi steners();

[P1-start-events]Ul Vi ewRoot must listen for the top level Post AddToVi ewEvent event sent by the Restore View
phase. Refer to Section 2.2.1 “Restore View” for more details about the publishing of this event. Upon receiving this
event, U Vi ewRoot must cause any “after” Restore View phase listeners to be called.[P1-end]

Ul Vi ewRoot is also the source for several kinds of system events. The system must publish a
Post AddToVi ewEvent , with the Ul Vi ewRoot as the source, during the Restore View phase, immediately after the
new Ul Vi ewRoot is set into the FacesCont ext for the request. The system must publish a Pr eRender Vi ew event,

Chapter 4 Standard User Interface Components 4-25

4.1.19.5

with Ul Vi ewRoot as the source, during the Render Response phase, immediately before

Vi ewHand! er. render Vi ew() is called. The Ul Vi ewRoot instance itself must override

processRest oreSt at e() and directly call pr ocessEvent (), passing a Post Rest or eSt at eEvent instance
as specified in the Javadocs for Ul Vi ewRoot . processRestoreState().

Partial Processing

Ul Vi ewRoot adds special behavior to pr ocessDecodes, processVal i dators, processUpdates,

get Render sChi I dren and encodeChi | dren to facilitate partial processing - namely the ability to have one or
more components processed through the execut e and/or r ender phases of the request processing lifecycle. Refer to
Section 13.4 “Partial View Traversal”, Section 13.4.2 “Partial View Processing”, Section 13.4.3 “Partial View
Rendering” for an overview of partial processing. [P1-start-viewroot-partial|JUl Vi ewRoot must perform partial
processing as outlined in the Javadocs for the “processXXX” and “encodeXXX” methods if the current request is a
partial request.[P1-end]

| 4-26 JavaServer Faces Specification * June 2009

4.2

4.2.1

Standard UIComponent Model Beans

Several of the standard Ul Conponent subclasses described in the previous section reference JavaBean components to
represent the underlying model data that is rendered by those components. The following subsections define the standard
U Conponent model bean classes.

DataModel

Dat aModel is an abstract base class for creating wrappers around arbitrary data binding technologies. It can be used to
adapt a wide variety of data sources for use by JavaServer Faces components that want to support access to an
underlying data set that can be modelled as multiple rows. The data underlying a DataModel instance is modelled as a
collection of row objects that can be accessed randomly via a zero-relative index

4.2.1.1 Properties
An instance of Dat aModel supports the following properties:
Name Access Type Description
rowAvailable RO boolean Flag indicating whether the current r owl ndex value points at an
actual row in the underlying data.
r owCount RO int The number of rows of data objects represented by this DataModel
instance, or -1 if the number of rows is unknown.
rowbat a RO oj ect An object representing the data for the currently selected row.
Dat aMbdel implementations must return an object that be
successfully processed as the “base” parameter for the
PropertyResol ver in use by this application. If the current
rowlndex value is -1, nul | is returned.
rowl ndex RW i nt Zero-relative index of the currently selected row, or -1 if no row is
currently selected. When first created, a Dat aMbdel instance
must return -1 for this property.
wrappedData RW Object Opaque property representing the data object wrapped by this
DataModel. Each individual implementation will restrict the types
of Object(s) that it supports.
42.1.2 Methods
Dat aModel must provide an i t erat or () to iterate over the row data for this model.
4.2.1.3 Events
No events are generated for this component.
4.2.14 Concrete Implementations

[P1-start-datamodel| The JSF implementation must provide concrete implementations of DataModel (in the
javax.faces.model package) for the following data wrapping scenarios:

Chapter 4 Standard User Interface Components 4-27

= ArrayDat aMbdel -- Wrap an array of Java objects.
= ListDataMWobdel -- Wrap aj ava. util . Li st of Java objects.

= Resul t Dat aMbdel -- Wrap an object of type j avax. servl et.jsp.jstl.sql.Result (the query results
from JSTL’s SQL tag library)

= Resul t Set Dat aMbdel -- Wrap an object of type j ava. sql . Resul t Set (which therefore means that
j avax. sqgl . RowSet instances are also supported).

= Scal ar Dat aMbdel -- Wrap a single Java object in what appears to be a one-row data set.
Each concrete Dat aMbdel implementation must extend the Dat aMbdel abstract base class, and must provide a
constructor that accepts a single parameter of the object type being wrapped by that implementation (in addition to a

zero-args constructor).[P1-end] See the JavaDocs for specific implementation requirements on Dat aMbdel defined
methods, for each of the concrete implementation classes.

| 4-28 JavaServer Faces Specification + June 2009

4.2.2

Selectltem

Sel ect | t emis a utility class representing a single choice, from among those made available to the user, for a
Ul Sel ect Many or Ul Sel ect One component. It is not itself a Ul Conponent subclass.

4.2.2.1 Properties
An instance of Sel ect | t emsupports the following properties:
Name Access Type Description
description RW String A description of this selection item, for use in development tools.
di sabl ed RW boolean Flag indicating that this option should be rendered in a fashion that
disables selection by the user. Default value is f al se.
| abel RW String Label of this selection item that should be rendered to the user.
val ue RW oj ect The server-side value of this item, of the same basic data type as
the parent component’s value. If the parent component type’s value
is a value expression that points at a primitive, this value must be
of the corresponding wrapper type.
4222 Methods
An instance of Sel ect | t emsupports no additional public processing methods.
42223 Events

An instance of Selectltem supports no events.

Chapter 4 Standard User Interface Components

4-29

4.2.3

SelectltemGroup

Sel ect | t emr oup is a utility class extending Sel ect | t em that represents a group of subordinate Sel ect|tem
instances that can be rendered as a “sub-menu” or “option group”. Render er s will typically ignore the val ue property
of this instance, but will use the | abel property to render a heading for the sub-menu.

4.2.3.1 Properties
An instance of Sel ect | t enar oup supports the following additional properties:
Name Access Type Description
selectltems RW Selectltem[] Array of Selectltem instances representing the subordinate
selection items that are members of the group represented by this
SelectltemGroup instance.
Note that, since Sel ect | t em&r oup is a subclass of Sel ect | t em Sel ect |t en> oup instances can be included in
the sel ect | t enms property in order to create hierarchies of subordinate menus. However, some rendering environments
may limit the depth to which such nesting is supported; for example, HTML/4.01 does not allow an <opt gr oup> to be
nested inside another <opt gr oup> within a <sel ect > control.
4232 Methods
An instance of Sel ect | t enar oup supports no additional public processing methods.
4233 Events

An instance of Sel ect | t em& oup supports no events.

| 4-30 JavaServer Faces Specification « June 2009

Expression Language and Managed Bean Facility

In the descriptions of the standard user interface component model, it was noted that all attributes, and nearly all
properties can have a value expression associated with them (see Section 3.1.4 “ValueExpression properties”). In
addition, many properties, such as acti on, acti onLi st ener, val i dat or, and val ueChangelLi st ener can be
defined by a method expression pointing at a public method in some class to be executed. This chapter describes the
mechanisms and APIs that JavaServer Faces utilizes in order to evaluate value expressions and method expressions.

JavaServer Faces relies on the Unified Expression Language (Unified EL, or just EL) provided by version 2.1 of the
JavaServer Pages specification (JSR-245). The EL is described in a separate specification document delivered as part of
the JSP 2.1 spec. Please consult that document for complete details about the EL.

Versions 1.0 and 1.1 of JavaServer Faces included a built in expression language and required an implementation of it.
The API for this old JSF EL is still preserved as deprecated classes and methods, and implementations must still support
that API. Please consult the Section 2.1.0.1 “Guide to Deprecated Methods Relating to the Unified EL and their
Corresponding Replacements” for details. This chapter will focus exclusively on how Faces leverages and integrates with
the Unified EL. It does not describe how the Unified EL operates.

5.1

5.1.1

Value Expressions

Overview

To support binding of attribute and property of values to dynamically calculated results, the name of the attribute or
property can be associated with a value expression using the set Val ueExpr essi on() method. Whenever the
dynamically calculated result of evaluating the expression is required, the get Val ue() method of the

Val ueExpr essi on is called, which returns the evaluated result. Such expressions can be used, for example, to
dynamically calculate a component value to be displayed:

<h: out put Text val ue="#{cust oner. nanme}”/>

which, when this page is rendered, will retrieve the bean stored under the “customer” key, then acquire the name
property from that bean and render it.

Besides the component value itself, value expressions can be used to dynamically compute attributes and properties. The
following example checks a bool ean property manager on the current user bean (presumably representing the
logged-in user) to determine whether the sal ary property of an employee should be displayed or not:

<h: out put Text rendered="#{user. manager}” val ue=
"#{enpl oyee. sal ary}"/>

Chapter 5 Expression Language and Managed Bean Facility 5-1

5.1.2

which sets the r ender ed property of the component to f al se if the user is not a manager, and therefore causes this
component to render nothing.

Value expressions can also be used to set a value from the user into the item obtained by evaluating the expression. For
example:

<h:i nput Text val ue="#{enpl oyee. nunber}”/>

When the page is rendered, the expression is evaluated as an r-value and the result is displayed as the default value in the
text field. When the page is submitted, the expression is evaluated as an l-value, and the value entered by the user
(subject to conversion and validation as usual) is pushed into the expression.

Value Expression Syntax and Semantics

Please see Section 1.2 of the Expression Language Specification, Version 2.1 for the complete specification of
ValueExpression syntax and semantics.

5.2

MethodExpressions

Method expressions are a very similar to value expressions, but rather than supporting the dynamic retrieval and setting
of properties, method expressions support the invocation (i.e. execution) of an arbitrary public method of an arbitrary
object, passing a specified set of parameters, and returning the result from the called method (if any). They may be used
in any phase of the request processing lifecycle; the standard JSF components and framework employ them
(encapsulated in a Met hodExpr essi on object) at the following times:

= During Apply Request Values or Invoke Application phase (depending upon the state of the i nredi at e property),
components that implement the Act i onSour ce2 behavioral interface (see Section 3.2.2 “ActionSource2”) utilize
Met hodExpr essi ons as follows:

« Ifthe acti onExpr essi on property is specified, it must be a Met hodExpr essi on expression that identifies
an Application Action method (see Section 7.3 “Application Actions”) that takes no parameters and returns a
String.

« It’s possible to have a method expression act as an Act i onLi st ener by using the classs
Met hodExpr essi onActi onLi st ener to wrap a method expression and calling the
addAct i onLi st ener () method on the Acti onSour ce. The method expression wrapped inside the
Met hodExpr essi onAct i onLi st ener mnust identify a public method that accepts an Act i onEvent (see
Section 3.4.2.1 “Event Classes”) instance, and has a return type of voi d. The called method has exactly the same
responsibilities as the pr ocessActi on() method of an Act i onLi st ener instance (see Section 3.4.2.2
“Listener Classes”) that was built in to a separate Java class.

= During the Apply Request Values or Process Validations phase (depending upon the state of the i nmedi at e
property), components that implement Edi t abl eVal ueHol der (such as Ul | nput and its subclasses) components
(see Section 3.2.7 “EditableValueHolder”) utilize method expressions as follows:

« The user can use the Met hodExpr essi onVal i dat or class to wrap a method expression that identifies a public
method that accepts a FacesCont ext instance and a Ul Conponent instance, and an Cbj ect containing the
value to be validated, and has a return type of voi d. This Met hodExpr essi onVal i dat or instance can then
be added as a normal Val i dat or using the Edi t abl eVal ueHol der . addVal i dat or () method. The called
method has exactly the same responsibilities as the val i dat e() method of a Val i dat or instance (see
Section 3.5.2 “Validator Classes”) that was built in to a separate Java class.

« The user can use the Met hodExpr essi onVal ueChangeli st ener class to wrap a method expression that
identifies a public method that accepts a Val ueChangeEvent (see Section 3.4.2.1 “Event Classes”) instance,
and has a return type of voi d. This Met hodExpr essi onVal ueChangeli st ener instance can then be added

| 5-2 JavaServer Faces Specification * June 2009vd

5.2.1

as a normal Val ueChangelLi st ener using EditableValueHolder.addValueChangeListener(). The called method
has exactly the same responsibilities as the pr ocessVal ueChange() method of a Val ueChangelLi st ener
instance (see Section 3.4.2.2 “Listener Classes”) that was built in to a separate Java class.

Here is the set of component properties that currently support Met hodBi ndi ng, and the method signatures to which
they must point:

TABLE 51 component properties whose type is DEPRECATED MethodBinding

component property method signature

DEPRECATED public String <nethodNanme>();

action

DEPRECATED public void

acti onLi st ener <met hodNanme>(j avax. f aces. event . Acti onEvent)
DEPRECATED public void

val i dat or <met hodNanme>(j avax. f aces. cont ext . FacesCont e

xt, javax.faces.conponent. U Conponent,
java.l ang. oj ect) ;

DEPRECATED public void
val ueChangelLi st ener <net hodNane>(j avax. f aces. event . Val ueChangeE
vent);

Note that for any of the parameters for the above methods may also be a subclass of what is listed above. For the above
properties that are marked as DEPRECATED, wrapper classes have been added that wrap a MethodExpression and
implement the appropriate listener interface, allowing the wrapped expression to be added as a strongly typed listener,
using the normal add* () pattern Here is the list of such wrapper classes:

TABLE 52 MethodExpression wrappers to take the place of DEPRECATED MethodBinding properties

component listener

property Wrapper class method signature
actionLi st ener javax.faces.event. M public void
t hodExpr essi onAction <met hodNanme>(j avax. f aces. event
Li st ener . ActionEvent);
val i dat or javax.faces.validato public void
r. Met hodExpressi onVa <net hodNanme>(j avax. f aces. conte
|'i dat or xt . FacesCont ext,
j avax. f aces. conponent . U Conpon
ent, java.lang. Qbject);
val ueChangelLis javax.faces.event.Me public void
tener t hodExpr essi onVal ueC <met hodNanme>(j avax. f aces. event
hangeli st ener . Val ueChangeEvent) ;

The Met hodBi ndi ng typed act i on property of Acti onSour ce is deprecated and has been replaced by the
Met hodExpr essi on typed acti onExpr essi on property of Acti onSour ce2.

MethodExpression Syntax and Semantics

The exact syntax and semantics of MethodExpression are now the domain of the Unified EL. Please see Section 1.2.1.2
of the Expression Language Specification, Version 2.1.

Chapter 5 Expression Language and Managed Bean Facility = 5-3

5.3

The Managed Bean Facility

Perhaps the biggest value-add of bringing EL concepts to Faces happens when the EL is combined with the managed
bean facility. This feature allows the user to configure an entire complex tree of POJO beans, including how they should
be scoped and populated with initial values, and expose them to EL expressions. Please see Section 5.3.1 “Managed
Bean Configuration Example”.

The Managed Bean Creation facility is configured by the existence of <managed- bean> elements in one or more
application configuration resources (see Section 11.4 “Application Configuration Resources”). Note that a special
provision has been made for application configuration resource files residing within META- | NF/ managed-
beans. xm entries on the application classpath. Please see Section 11.4.4 “Application Configuration Resource
Format” for the normative spec requirement. Such elements describe the characteristics of a bean to be created, and
properties to be initialized, with the following nested elements:

= <managed- bean- name> -- The key under which the created bean can be retrieved; also the key in the scope under
which the created bean will be stored, unless the value of <managed- bean- scope> is set to none.

= <managed- bean- cl ass> -- The fully qualified class name of the application class used to instantiate a new
instance. This class must conform to JavaBeans design patterns -- in particular, it must have a public zero-args
constructor, and must have public property setters for any properties referenced with nested <managed- pr operty>
elements -- or it must be a class that implements j ava. util . Map orjava. util.List.

= <managed- bean- scope> -- The scope (r equest, vi ew, sessi on, or appl i cat i on) under which the newly
instantiated bean will be stored after creation (under the key specified by the <managed- bean- nane> element), or
none for a bean that should be instantiated and returned, but not stored in any scope. The latter option is useful when
dynamically constructing trees of related objects, as illustrated in the following example.
The runtime must must allow the value of this element to be an EL Val ueExpr essi on. If so, and the expression
evaluates to nul | , an informative error message including the expression string and the name of the bean must be
logged. If the expression evaluates to a Map, that Map is used as the scope into which the bean will be stored. If
storing the bean into the Map causes an Except i on, the exception is allowed to flow up to the
Except i onHandl er. If the Val ueExpr essi on does not evaluate to a Map, a FacesExcept i on must be
thrown with a message that includes the expression string, the t 0St ri ng() of the value, and the type of the value.

s <list-entries>or<map-entries>--Used to configure managed beans that are themselves instances of
java.util.List orjava.util.Mp, respectively. See below for details on the contents of these elements.

= <managed- pr operty> -- Zero or more elements used to initialize the properties of the newly instantiated bean
(see below).

After the new managed bean instance is instantiated, but before it is placed into the specified scope (if any), each nested
<managed- pr opert y> element must be processed and a call to the corresponding property setter must be made to
initialize the value of the corresponding property. If the managed bean has properties not referenced by <managed-

pr oper t y> elements, the values of such properties will not be affected by the creation of this managed bean; they will
retain whatever default values are established by the constructor.

Each <managed- pr opert y> element contains the following elements used to configure the execution of the
corresponding property setter call:

= <property-nanme> -- The property name of the property to be configured. The actual property setter method to be
called will be determined as described in the JavaBeans Specification.

= Exactly one of the following sub-elements that can be used to initialize the property value in a number of different
ways:

« <map-entries> -- A set of key/value pairs used to initialize the contents of a property of type
java. util.Mp (see below for more details).

« <nul | -val ue/ > -- An empty element indicating that this property must be explicitly initialized to nul | . This
element is not allowed if the underlying property is of a Java primitive type.

« <val ue> -- A String value that will have any leading and trailing spaces stripped, and then be converted
(according to the rules described in the JSP Specification for the <jsp:setProperty> action) to the corresponding
data type of the property, prior to setting it to this value.

| 5-4 JavaServer Faces Specification * June 2009vd

« <list-entries>--A set of values used to initialize the contents of a property of type array or
java. util.List. See below for more information.

As described above, the <map- ent ri es> element is used to initialize the key-value pairs of a property of type
java. util . Map. This element may contain the following nested elements:

<key- cl ass> -- Optional element specifying the fully qualified class name for keys in the map to be created. If not
specified, j ava. | ang. Stri ng is used.

<val ue- cl ass> -- Optional element specifying the fully qualified class name for values in the map to be created.
If not specified, j ava. | ang. St ri ng is used.

<map- ent ry> -- Zero or more elements that define the actual key-value pairs for a single entry in the map. Nested
inside is a <key> element to define the key, and then exactly one of <nul | - val ue>, <val ue> to define the value.
These elements have the same meaning as when nested in a <managed- pr oper t y> element, except that they refer
to an individual map entry’s value instead of the entire property value.

As described above, the <I i st - ent ri es> element is used to initialize a set of values for a property of type array or
java. util.List. This element may contain the following nested elements:

<val ue- cl ass> -- Optional element specifying the fully qualified class name for values in the map to be created.
If not specified, j ava. | ang. St ri ng is used.

Zero or more elements of type <nul | - val ue>, <val ue> to define the individual values to be initialized. These
elements have the same meaning as when nested in a <managed- pr oper t y> element, except that they refer to an
individual list element instead of the entire property value.

The following general rules apply to the operation of the Managed Bean Creation facility:

Properties are assigned in the order that their <managed- pr opert y> elements are listed in the application
configuration resource.

If a managed bean has writeable properties that are not mentioned in <mmanaged- pr oper t y> elements, the values
of those properties are not assigned any values.

The bean instantiation and population with properties must be done lazily, when an EL expression causes the bean to
be referenced. For example, this is the case when a Val ueExpr essi on or Met hodExpr essi on has its
get Val ue() or set Val ue() method called.

Due to the above mentioned laziness constraint, any error conditions that occur below are only required to be
manifested at runtime. However, it is conceivable that tools may want to detect these errors earlier; this is perfectly
acceptable. The presense of any of the errors described below, until the end of this section, must not prevent the
application from deploying and being made available to service requests.

[P1-start managed bean config error conditions] It is an error to specify a managed bean class that does not exist, or
that cannot be instantiated with a public, zero-args constructor.

It is an error to specify a <pr operty- nanme> for a property that does not exist, or does not have a public setter
method, on the specified managed bean class.

It is an error to specify a <val ue> element that cannot be converted to the type required by a managed property, or
that, when evaluated, results in a value that cannot be converted to the type required by a managed property. [P1-end]

If the type of the property referenced by the <managed- pr opert y> element is a Java enum, the contents of the
<val ue> element must be a String that yields a valid return from

java. | ang. Enum val ueOf (PROPERTY_CLASS, VALUE) where PROPERTY_CLASS is the

java. | ang. d ass for the property and VALUE is the contents of the <val ue> element in the application
configuration resource. If any exception is thrown from Enum val ueOf () it is an error.

[P1-start managed bean scope errors] It is an error for a managed bean created through this facility to have a property
that points at an object stored in a scope with a (potentially) shorter life span. Specifically, this means, for an object
created with the specified <managed- bean- scope>, then <val ue> evaluations can only point at created objects
with the specified managed bean scope:

= none -- none
« application -- none, application
» session -- none, application, session

« view -- none, application, session, view

Chapter 5 Expression Language and Managed Bean Facility 5-5

» request -- none, application, session, view, request [P1-end]

= If a bean points to a property whose value is a mixed expression containing literal strings and expressions, the net
scope of the mixed expression is considered to be the scope of the narrowest sub-expression, excluding expressions in
the none scope.

= [Pl-start implicit objects in request scope]| Data accessed via an implicit object is also defined to be in a scope. The
following implicit objects are considered to be in request scope:

« cookie

« facesCont ext
« header

« header Val ues
« param

« paranVal ues
« request

« request Scope
« View [Pl-end]

= [Pl-start implicit objects in session scope] The only implicit objects in session scope are Sessi on and
sessi onScope [Pl-end]

= [Pl-start implicit objects in application scope] The following implicit objects are considered to be in application
scope:

« application
« applicationScope
« initParam [Pl-end]
= [Pl-start cyclic references error] It is an error to configure cyclic references between managed beans. [P1-end]
= [Pl-start managed bean names correctness] Managed bean names must conform to the syntax of a Java language

identifier. [P1-end]

The initialization of bean properties from <map-entri es> and <l i st - entri es> elements must adhere to the
following algorithm, though any confirming implementation may be used.

For <map-entri es>:
1. Call the property getter, if it exists.

2. If the getter returns nul | or doesn't exist, create a j ava. uti | . HashMap, otherwise use the returned
java.util . Map.

3. Add all entries defined by nested <map- ent r y> elements in the order they are listed, converting key values defined
by nested <key> elements to the type defined by <key- cl ass> and entry values defined by nested <val ue>
elements to the type defined by <val ue- cl ass>. If a value is given as a value expression, evaluate the reference
and store the result, converting to <val ue- cl ass> if necessary. If <key- cl ass> and/or <val ue- cl ass> are
not defined, use j ava. | ang. Stri ng. Add nul | for each <nul | - val ue> element.

4. If anew j ava. util . Map was created in step 2), set the property by calling the setter method, or log an error if
there is no setter method.

For<list-entries>
1. Call the property getter, if it exists.

2. If the getter returns nul | or doesn't exist, create a j ava. uti |l . ArrayLi st, otherwise use the returned Obj ect
(an array or a j ava. uti | . List).

| 5-6 JavaServer Faces Specification + June 2009vd

5.3.1

. Ifa Li st was returned or created in step 2), add all elements defined by nested <val ue> elements in the order they

are listed, converting values defined by nested <val ue> elements to the type defined by <val ue- cl ass>. If a
value is given as a value expression, evaluate the reference and store the result, converting to <val ue- cl ass> if
necessary. If a <val ue- cl ass> is not defined, use the value as-is (i.e., as a j ava. | ang. Stri ng). Add null for
each <nul | - val ue> element.

. If an array was returned in step 2), create a j ava. uti | . ArrayLi st and copy all elements from the returned array

to the new Li st , wrapping elements of a primitive type. Add all elements defined by nested <val ue> elements as
described in step 3).

. Ifanewjava. util.Li st was created in step 2) and the property is of type Li St , set the property by calling the

setter method, or log an error if there is no setter method.

. Ifanewjava. util.Li st was created in step 2) and the property is a java array, convert the Li St into an array

of the property type, and set it by calling the setter method, or log an error if there is no setter method.

. Ifanewjava. util.Li st was created in step 4), convert the Li St to an array of the proper type for the property

and set the property by calling the setter method, or log an error if there is no setter method.

Managed Bean Configuration Example

The following <managed-bean> elements might appear in one or more application configuration resources (see
Section 11.4 “Application Configuration Resources”) to configure the behavior of the Managed Bean Creation facility.

Assume that your application includes Cust oner Bean with properties mai | i ngAddr ess and shi ppi ngAddr ess
of type Addr ess (along with additional properties that are not shown), and Addr essBean implementation classes with
String properties of type street, city, state, country, and post al Code.

<managed- bean>
<descri pti on>

A customer bean will be created as needed, and stored in
request scope. Its “mailingAddress” and “street Address”
properties will be initialized by virtue of the fact that the

“val ue” expressions will not encounter any object under
key “addressBean” in any scope.

</ descri pti on>

<managed- bean- nanme>cust oner </ managed- bean- nane>

<managed- bean- cl ass>
com nmyconpany. nybeans. Cust ormer Bean

</ managed- bean- cl ass>

<managed- bean- scope> request </ nmanaged- bean-scope>

<managed- property>
<property-name>mnai |l i ngAddr ess</ property-nane>
<val ue>#{ addr essBean} </ val ue>

</ managed- pr operty>

<managed- pr operty>
<property-nanme>shi ppi ngAddr ess</ pr operty- nane>
<val ue>#{ addr essBean} </ val ue>

</ managed- pr operty>

<managed- property>
<pr operty-nane>cust oner Type</ pr operty- name>
<val ue>New</ val ue> <!-- Set to literal value -->

</ managed- pr operty>

</ managed- bean>

Chapter 5 Expression Language and Managed Bean Facility = 5-7

<managed- bean>
<descri pti on>
A new AddressBean will not be added to any scope, because we
only want to create i nstances when a Cust omer Bean creation asks
for them Therefore, we set the scope to “none”.
</ descri ption>
<managed- bean- name>addr essBean</ managed- bean- nanme>
<managed- bean- cl ass>
com nmyconpany. nybeans. Addr essBean
</ managed- bean- cl ass>
<managed- bean- scope> none </ nanaged- bean-scope>
</ managed- bean>

If a value expression “#{ cust omer . mai | i ngAddr ess. ci t y}” were to be evaluated by the JSF implementation,
and there was no object stored under key “cust oner ” in request, view, session, or application scope, a new

Cust oner Bean instance will be created and stored in request scope, with its mai | i ngAddr ess and

shi ppi ngAddr ess properties being initialized to instances of Addr essBean as defined by the configuration
elements shown above. Then, the evaluation of the remainder of the expression can proceed as usual.

Although not used by the JSF implementation at application runtime, it is also convenient to be able to indicate to JSF
tools (at design time) that objects of particular types will be created and made available (at runtime) by some other
means. For example, an application configuration resource could include the following information to declare that a
JDBC data source instance will have been created, and stored in application scope, as part of the application’s own
startup processing.

<r ef erenced- bean>
<descri pti on>
A JDBC data source will be initialized and nmade available in
sone scope (presunably application) for use by the JSF based
application when it is actually run. This information is not
used by the JSF inplenentation itself; only by tools.
</ descri ption>
<r ef erenced- bean- name> dat aSour ce </referenced-bean-nane>
<r ef erenced- bean-cl ass>
j avax. sql . Dat aSour ce
</ ref erenced- bean-cl ass>
</ r ef er enced- bean>

This information can be utilized by the tool to construct user interfaces based on the properties of the referenced beans.

5.4

Leveraging Java EE 5 Annotations in Managed Beans

JSF Implementations that are running as a part of Java EE 5 must allow managed bean implementations to use the
annotations specified in section 14.5 of the Servlet 2.5 Specification to allow the container to inject references to
container managed resources into a managed bean instance before it is made accessible to the JSF application. Only
beans declared to be in r equest, sessi on, or appl i cati on scope are eligble for resource injection.

Please consult the Java 2 Platform Entprise Edition Specification 5.0 for complete details of this feature. Here is a
summary of the valid injection annotations one may use in a managed bean. [P1-start valid annotations in a managed
bean]

@Rresour ce

| 5-8 JavaServer Faces Specification + June 2009vd

54.1

@Resour ces

@JB

@JBs

@\ebSer vi ceRef

@\ébServi ceRef s

@Per si st enceCont ext
@Per si st enceCont ext s
@er si stenceUni t
@%ersistenceUnits [Pl-end]

Following is an example of valid usages of this feature in a managed bean
public class User extends Object {

private @JB Shoppi ngCart cart;

private @Resource lnventory inventory;

private DataSource custonerData;

@Resour ce(name="cust ormrer Dat a”)
private void set Cust oner Dat a(Dat aSour ce data) {
custonerData = dat a;

public String getOrder Summary() {
/1 Do sonething with the injected resources

/1 And generate a textual summary of the order

}

This example illustrates that the above annotations can be attached to instance variables or to JavaBeans setters. The JSF
implementation running in a Java EE 5 container must guarantee that the injections are performed before the bean is
handed back to the user. Generally, this is done by performing the injection immediately after the lazy instantiation of the
managed bean.

Managed Bean Lifecycle Annotations

JSF implementations running in a Java EE 5 compliant container must support attaching the @0st Const r uct and
@Pr eDest r oy annotations to aid in awareness of the managed-bean lifecycle.

Methods on managed beans declared to be in r equest, vi ew, sessi on, or appl i cati on scope, annotated with
@Post Const r uct , must be called by the JSF implementation after resource injection is performed (if any) but before
the bean is placed into scope.

[P1-start rules governing invocation of @PostConstruct annotated methods]If the method throws an unchecked
exception, the JSF implementation must not put the managed-bean into service, a message must be logged, and further
methods on that managed bean instance must not be called. [P1-end]

Chapter 5 Expression Language and Managed Bean Facility = 5-9

Methods on managed beans declared to be in r equest, sessi on, or appl i cati on scope, annotated with

@°r eDest r oy, must be called by the JSF implementation before the bean is removed from its scope or before the scope
itself is destroyed, whichever comes first. In the case of a managed bean placed in Vi ew scope, methods annotated with
@°r eDest r oy must only be called when the view scope is destroyed. See the javadoc for

FacesCont ext . set Vi ewRoot () . This annotation must be supported in all cases where the above

@Post Const r uct annotation is supported.

[P1-start rules governing invocation of @PreDestroy annotated methods] If the method throws an unchecked exception,
the JSF implementation may log it, but the exception must not otherwise alter the execution.

Refer to the Java EE specification section 2.5 and the Common Annotations for the JavaTM PlatformTM specification
section 2.5 for more details.[P1-end]

5.5

5.5.1

55.1.1

How Faces Leverages the Unified EL

This section is non-normative and covers the major players in the Unified EL and how they relate to JavaServer Faces.
The number one goal in this version of the JavaServer Faces specification is to export the concepts behind the JSF EL
into the Unified EL, which is part of the the JavaServer Pages version 2.1 specification, and then rely on those facilities
to get the work done. Readers interested in how to implement the Unified EL itself must consult the Unified EL Spec
document.

ELContext

The ELContext is a handy little “holder” object that gets passed all around the Unified EL API. It has two purposes.

= To allow technologies that use the Unified EL, such as JavaServer Faces, the JSF View Declaration Language (JSF

VDL), and JSP, to store any context information specific to that technology so it can be leveraged during expression
evaluation. For example the expression “${ vi ew. vi ewl d} ” is specific to Faces. It means, “find the Ul Vi ewRoot
instance for the current view, and return its Vi ewl d”. The Unified EL doesn’t know about the “view” implicit object
or what a UI'ViewRoot is, but JavaServer Faces does. The Unified EL has plugin points that will get called to resolve
“view”, but to do so, JavaServer Faces needs access to the FacesCont ext from within the callstack of EL
evaluation. Therefore, the ELCont ext comes to the rescue, having been populated with the FacesCont ext earlier
in the request processing lifecycle.

= To allow the pluggable resolver to tell the Unified EL that it did, in fact, resolve a property and that further resolvers
must not be consulted. This is done by setting the “pr opert yResol ved” property to t r ue.

The complete specification for ELResolver may be found in Chapter 2 of the Expression Language Specification, Version
2.1

Lifetime, Ownership and Cardinality

An ELContext instance is created the first time get ELCont ext () is called on the FacesCont ext for this request.
Please see Section 6.1.3 “ELContext” for details. Its lifetime ends the same time the FacesCont ext’ s lifetime ends.
The FacesCont ext maintains the owning reference to the ELCont ext . There is at most one ELCont ext per
FacesCont ext .

| 5-10 JavaServer Faces Specification * June 2009vd

5.5.1.2

55.1.3

55.1.4

552

Properties

Name Access Type Description

ELResol ver RO javax. el . EL Return the ELResolver instance described

Resol ver in Section 5.6.1 “Faces ELResolver for

JSP Pages”

propertyResol ved RW boolean Set by an ELResolver implementation if it
successfully resolved a property. See
Section 5.5.2 “ELResolver” for how this
property is used.

Methods

Here is a subset of the methods that are relevant to Faces.

public Object getContext(d ass key);
voi d put Context (Cl ass key, Object contextlnstance);

As mentioned in Section 6.1.3 “ELContext”, the put Cont ext () method is called, passing the current

FacesCont ext instance the first time the system asks the FacesCont ext for its ELCont ext . The get Cont ext ()
method will be called by any ELResol ver instances that need to access the FacesCont ext to perform their
resolution.

Events

The creation of an ELContext instance precipitates the emission of an ELCont ext Event from the FacesCont ext
that created it. Please see Section 6.1.3 “ELContext” for details.

ELResolver

Faces 1.1 used the Var i abl eResol ver and Propert yResol ver classes as the workhorses of expression
evaluation. The Unified API has the ELResol ver instead. The ELResolver concept is the heart of the Unified EL.
When an expression is evaluated, the ELResolver is responsible for resolving each segment in the expression. For
example, in rendering the component behind the tag “<h: out put Text val ue="#{user. address. street}”
/> the ELResolver is called three times. Once to resolve “user”, again to resolve the “address” property of user, and
finally, to resolve the “street” property of “address”. The complete specification for ELResolver may be found in Chapter
2 of the Expression Language Specification, Version 2.1.

[N/T-start two ELResolver impls] As described in more detail in Section 5.6.1 “Faces ELResolver for JSP Pages”, Faces
must provide two implementations of ELResol ver. [P1-end]Which of these two implementations is actually used to
resolve an expression depends on where the expresison is evaluated. If the expression is evaluated in a markup page, the
ELResolver for markup pages is used. If the expression is evaluated in java VM hosted code from Faces, another
ELResolver is used that is tailored for use inside of Faces java VM hosted code. During the course of evaluation of an
expression, a variety of sources must be considered to help resolve each segment of the expression. These sources are
linked in a chain-like fashion. Each link in the chain has the opportunity to resolve the current segment. If it does so, it
must set the “pr oper t yResol ved” property on the ELCont ext, to t r ue. If not, it must not modify the value of the
“pr opert yResol ved” property. If the “pr oper t yResol ved” property is not set to t r ue the return value from the
ELResol ver method is ignored by the system.

Chapter 5 Expression Language and Managed Bean Facility = 5-11

5.5.2.1

5522

55.23

5524

553

5.5.3.1

Lifetime, Ownership, and Cardinality

ELResolver instances have application lifetime and scope. The JSP container maintains one top level ELResolver (into
which a Faces specific ELResolver is added) accessible from

JspCont ext . get ELCont ext (). get ELResol ver (). This ELResolver instance is also used from the JSF VDL,
even though JSF VDL pages do not themselves use JSP. Faces maintains one ELResol ver (separate from the one
handed to the JSP container) accessible from FacesCont ext . get ELCont ext () . get ELResol ver () and
Application. get ELResol ver ().

Properties

ELResolver has no proper JavaBeans properties

Methods

Here is a subset of the methods that are relevant to Faces.

public Object getVal ue(ELContext context, Cbject base, Object
property);

voi d set Val ue(ELCont ext context, Cbject base, Object property,
oj ect val ue);

get Val ue() looks at the argument base and tries to return the value of the property named by the argument
property. For example, if base is a JavaBean, pr oper t y would be the name of the JavaBeans property, and the
resolver would end up calling the getter for that property.

set Val ue()) looks at the argument base and tries to set the argument val ue into the property named by the argument
property. For example, if base is a JavaBean, pr oper t y would be the name of the JavaBeans property, and the
resolver would end up calling the setter for that property.

There are other methods, such as i SReadOnl y() that are beyond the scope of this document, but described completely
in the Unified EL Specification.

Events

ELResol ver precipitates no events.

ExpressionFactory

Faces 1.1 used the Application class as a factory for Val ueBi ndi ng and Met hodBi ndi ng instances. The Unified EL
has the Expr essi onFact or y class instead. It is a factory for Val ueExpr essi on and Met hodExpr essi on
instances.

Lifetime, Ownership, and Cardinality

Expressi onFact ory instances are application scoped. The Appl i cat i on object maintains the

Expressi onFact ory instance used by Faces (See Section 7.1.9 “Acquiring ExpressionFactory Instance”). The
JspAppl i cati onCont ext object maintains the EXpr essi onFact or y used by the JSP container (and therefore by
the JSF VDL). It is permissible for both of these access methods to yield the same java object instance.

| 5-12 JavaServer Faces Specification * June 2009vd

5.5.3.2

5.5.33

5534

5.6

5.6.1

Properties

Expressi onFact ory has no properties.

Methods

publ i ¢ Met hodExpressi on creat eMet hodExpr essi on(ELCont ext cont ext,
String expression, FunctionMapper fnMapper, C ass[] paranilypes);
publ i ¢ Val ueExpressi on creat eVal ueExpressi on(ELCont ext cont ext,

String expression, O ass expectedType, FunctionMapper fnMapper);

These methods take the human readable expression string, such as " #{ user . addr ess. street}” and return an
object oriented representation of the expression. Which method one calls depends on what kind of expression you need.
The Faces Appl i cati on class has convenience methods specific to Faces needs for these concepts, please see
Section 7.1.10 “Programmatically Evaluating Expressions”.

Events

Expressi onFact ory precipitates no events.

ELResolver Instances Provided by Faces

This section provides details on what an implementation of the JavaServer Faces specification must do to support the
Unified EL for usage in a Faces application.

Section 5.5.2 “ELResolver” mentions that a Faces implementation must provide two implementations of ELResolver.
One ELResolver, let’s call it the Faces FELResolver For Markup Pages, is plugged in to the top level resolver chain
returned from JspCont ext . get ELCont ext () . get ELResol ver (). This top level resolver chain is used by the
view declaration language container (JSP or JSF View Declaration Language), and possibly by tag handlers, to resolve
expressions. The other ELResol ver, let’s call it the ELResolver for Facelets and Programmatic Access, is used by
Facelets markup pages, and is returned from FacesCont ext . get ELCont ext () . get ELResol ver () and
Application. get ELResol ver (), and is used to resolve expressions that appear programmatically. See the
javadocs for j avax. el . ELResol ver for the specification and method semantics for each method in ELResol ver.
The remainder of this section lists the implementation requirements for these two resolvers.

Faces ELResolver for JSP Pages

As mentioned in Section 5.5.2 “ELResolver”, during the course of evaluation of an expression, a variety of sources must
be considered to help resolve each segment of the expression. These sources are linked in a chain-like fashion. Each link
in the chain has the opportunity to resolve the current segment. The Unified EL provides a container class to support this
multi-source variable resolution: j avax. el . Conposi t eELResol ver. The implementation for the Faces ELResolver

for JSP Pages is described as a set of ELResol ver s inside of a Conposi t eELResol ver instance, but any

implementation strategy is permissible as long as the semantics are preserved.

This diagram shows the set of ELResol ver instances that must be added to the Faces ELResolver for JSP Pages. This
instance must be handed to the JSP container via a call to

JspFactory. get Def aul t Fact ory() . get JspAppl i cati onCont ext (). addELResol ver () at application
startup time. Even though we are making a JSP API call to install this ELResol ver, we do not require using JSP to
develop JSF applications. It also shows the order in which they must be added. [P2-start there are 18 methods in the

Chapter 5 Expression Language and Managed Bean Facility 5-13

5.6.1.1

below tables, each can corresponding to a method on a particular ELResolver. With clever testing, it is possible to write
assertions for these. Testing the legacy VariableResolver and PropertyResolvers is not included in this 18 methods
number. These classes may be tested simply by noting that the methods do indeed get called on a user-provided
VariableResolver or PropertyResolver.] [P1-end]

TABLE 5-3 Faces ELResolver for JSP Pages

' Faces ELResolver for JSP .

—' faces.ImplicitObjectELResolverForJdSP '
—' faces .ManagedBeanELResolver .

—' faces.ResourceELResolver .

—' faces.ResourceBundleELResclver '
—' ElL Resolvers in application configuration resources '

faces.VariableResolverChainWrapper
Supports legacy jsf.VariableResolvers

faces.PropertyResolverChainWrapper
Supports legacy jsf.PropertyResolvers

—' ElL Resolvers from Application.addELResolver() '

The semantics of each ELResolver are given below, either in tables that describe what must be done to implement each
particular method on ELResol ver, or in prose when such a table is inappropriate.

Faces Implicit Object ELResolver For JSP

This resolver relies on the presence of another, JSP specific, implicit object ELResolver in the chain by only resolving
the “facesContext” and “view” implicit objects.

| 5-14 JavaServer Faces Specification « June 2009vd

TABLE 5-4 Faces ImplicitObjectELResolver for JSP

ELResolver method

implementation requirements

get Val ue

get Type

set Val ue

If base is non-null, return null.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

If base is null and property is a String equal to
“facesContext”, call setPropertyResolved(true) on
the argunent ELContext and return the FacesContext
for this request.

If base is null and property is a String equal to
“view', call setPropertyResolved(true) on the
argunment ELContext and return the U Vi ewRoot for
this request by calling

f acesCont ext . get Ul Vi ewRoot () .

This ELResol ver nust also support the inplicit
object “resource” as specified in Section 5.6.2.1

“I'nmplicit Object ELResolver for Facelets and
Programmati c Access”

If base is non-null, return null.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

If base is null and property is a String equal to
“facesContext” or “view', call

set PropertyResol ved(true) and return null;

O herwi se, just return null;This ELResol ver nust
al so support the inplicit object “resuorce” as
specified in Section 5.6.2.1 “Inplicit Object
ELResol ver for Facelets and Programmtic Access”

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

If base is null and property is a String equal to
“facesContext” or “view', throw

javax. el . PropertyNot Witeable, since “view and
“facesContext” are read-only. This ELResol ver nust
al so support the inplicit object “resuorce” as
specified in Section 5.6.2.1 “Inplicit Object
ELResol ver for Facelets and Programmtic Access”

Chapter 5 Expression Language and Managed Bean Facility

5-15

ELResolver method implementation requirements

i sReadOnl y If base is non-null, return false.
If base is null and property is null, throw
Pr opert yNot FoundExcept i on.
If base is null and property is a String equal to
“facesContext” or “view', call
set PropertyResol ved(true) on the argunment ELCont ext
and return true.

G herwi se return false; This ELResol ver nust also
support the inplicit object “resuorce” as specified
in Section 5.6.2.1 “Inplicit Object ELResolver for
Facel ets and Programmatic Access”

get Feat ur eDesc If base is non-null, return null.

riptors If base is null, return an Iterator containing

three java. beans. FeatureDescri ptor instances, one
for the “view property, one for the “facesContext”
property and one for the “resource” property. It is
required that all of the FeatureDescriptor
instances in the Iterator set Bool ean. TRUE as the
val ue of the ELResol ver. RESOLVABLE AT _DESI GN_TI ME
attribute. The nane and displayNane of the

Feat ureDescri ptor nust be “view', “facesContext”, *“
or “resource” as appropriate. FacesContext.class,
Ul Vi ewRoot . cl ass, or ResourceHandl er.cl ass nust be
stored as the value of the ELResol ver. TYPE
attribute, as approriate. The shortDescription nust
be a suitable description depending on the

i mpl enentati on. The expert and hi dden properties
must be false. The preferred property nust be true.

get CormonPr ope If base is non-null, return null.
rtyType If base is null and return String.class.
5.6.1.2 ManagedBean ELResolver

This is the means by which the managed bean creation facility described in Section 5.3 “The Managed Bean Facility” is
called into play during EL resolution.

| 5-16 JavaServer Faces Specification June 2009vd

TABLE 5-5 ManagedBeanELResolver

ELResorver method

implementation requirements

get Val ue

get Type

set Val ue

If base is non-null, return null.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

If property matches the name of an entry in the
request, session, or application scopes, in that
order, return null.

If base is null, and property nmatches one of the
managed- bean-name declarations in the application
configuration resources, instantiate the bean,
populate it with properties as described in
Section 5.3 "“The Managed Bean Facility”, store it
in the scope specified by the managed-bean-scope
declaration for this this nmanaged-bean, call

set PropertyResol ved(true) on the argunent
ELContext, and return the freshly instantiated
managed- bean.

O herwi se, return null.

If base is null and property is null, throw
Propert yNot FoundExcept i on.

QG herwise return null;

If base is null and property is null, throw
Pr opert yNot FoundExcept i on.
O herwise, if base is null, and property natches

one of the nanaged-bean-nane declarations in the
application configuration resources, and a nmanaged
bean wi th that managed- bean-nane does not yet exi st
in the specified scope, instantiate the bean,
populate it with properties as described in
Section 5.3 “The Managed Bean Facility”, store it
in the scope specified by the managed-bean-scope
declaration for this this nmanaged-bean and return.
If the managed bean does exist, take no action and
return. In either case (the bean exists or does not
exist), the actual setting will happen by virtue of
t he BeanELResol ver.

O herwi se take no action and return.

Chapter 5 Expression Language and Managed Bean Facility

5-17

ELResorver method implementation requirements

i sReadOnl y If base is non-null, return false.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

If base is null return false. W never set the
propertyResl oved property in this nethod because
the set responsibility is taken care of by the
ScopedAttri but eELResol ver.

get Feat ur eDesc If base is non-null, return null.

riptors If base is null, return an Iterator containing
j ava. beans. Feat ureDescri ptor instances for each
managed-bean in the application-configuration
resources. It is required that all of the
Feat ureDescriptor instances in the lterator set
Bool ean. TRUE as the value of the
ELResol ver . RESOLVABLE_AT _DESI GN_TI ME attribute. The
nane and di spl ayNane of the FeatureDescriptor nust
be the managed- bean-name. The actual java C ass
instance for the managed-bean-cl ass must be stored
as the value of the ELResolver.TYPE attribute. The
shortDescription of the FeatureDescriptor nust be
the description of the nanagaged-bean elenent, if
present, null otherwi se. The expert and hidden
properties nust be false. The preferred property
must be true.

get CormonPr ope If base is non-null, return null.
rtyType If base is null, return Object.class.
5.6.1.3 Resource ELResolver

Please see Section 5.6.2.5 “Resource ELResolver” for the specification of this ELResolver.

5.6.1.4 ResourceBundle ELResolver for JSP Pages

This is the means by which resource bundles defined in the application configuration resources are called into play
during EL resolution.

| 5-18 JavaServer Faces Specification June 2009vd

TABLE 5-6 ResourceBundleELResolver

ELResorver method

implementation requirements

get Val ue

get Type

set Val ue

If base is non-null, return null.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

If base is null and property is a String equal to
the value of the <var> elenent of one of the
<resource-bundl e>'s in the application
configuration resources, use the Locale of the
current Ul ViewRoot and the base-nane of the
resource-bundle to |load the ResourceBundl e. Cal |
set PropertyResol ved(true). Return the

Resour ceBundl e. Q herwise, return null.

If base is non-null, return null.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

If base is null and property is a String equal to
the value of the <var> elenent of one of the
<resource-bundl e>'s in the application
configuration resources, call

set PropertyResol ved(true) and return

Resour ceBundl e. cl ass.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on. If base is null and
property is a String equal to the value of the
<var> elenent of one of the <resource-bundle>s in
the application configuration resources throw
javax. el . PropertyNot Witeable, since

Resour ceBundl es are read-only.

Chapter 5 Expression Language and Managed Bean Facility

5-19

5.6.1.5

5.6.1.6

ELResorver method implementation requirements

i sSReadOnl y If base is non-null, return null. |If base is false
and property is null, throw
Pr opert yNot FoundExcepti on. If base is null and

property is a String equal to the value of the
<var> el enent of one of the <resource-bundle>s in
the application configuration resources, call

set PropertyResol ved(true) on the argunment ELCont ext
and return true. O herwise return false;

get Feat ur eDesc If base is non-null, return null.

riptors If base is null, return an lterator containing
j ava. beans. Feat ureDescri ptor instances, one for
each <resource-bundle> in the <application>
el ement . It is required that all of these
Feat ureDescri ptor instances set Bool ean. TRUE as the
val ue of the ELResol ver. RESOLVABLE AT _DESI GN_TI ME
attribute. The nane of the FeatureDescriptor nust
be the var elenent of the <resource-bundle> The
di spl ayName of the FeatureDescriptor nust be the
di spl ay-nane of the <resource-bundl e>.
Resour ceBundl e. cl ass nust be stored as the val ue of
the ELResol ver. TYPE attribute. The shortDescription
must be a suitable description depending on the
i mpl ementati on. The expert and hi dden properties
must be false. The preferred property nust be true.

get CormonPr ope If base is non-null, return null.
rtyType If base is null, return string.d ass.

ELResolvers in the application configuration resources

The <el - r esol ver > element in the application configuration resources will contain the fully qualified classname to a
class with a public no-arg constructor that implements j avax. el . ELResol ver. These are added to the Faces
ELResolver for JSP Pages and the Faces ELResolver for Facelets and Programmatic Access in the order in which they
occur in the application configuration resources.

VariableResolver Chain Wrapper

This is the means by which Var i abl eResol ver instances that have been specified in <vari abl e-resol ver>
elements inside the application configuration resources are allowed to affect the EL resolution process. If there are one
or more <var i abl e-resol ver > elements in the application configuration resources, an instance of ELResolver with
the following semantics must be created and added to the Faces ELResolver for JSP Pages as indicated in the

Section TABLE 5-3 “Faces ELResolver for JSP Pages”.

By virtue of the decorator pattern described in Section 11.4.6 “Delegating Implementation Support”, the default

Var i abl eResol ver will be at the end of the Var i abl eResol ver chain (See Section 5.8.1 “VariableResolver and
the Default VariableResolver”), if each custom Var i abl eResol ver chose to honor the full decorator pattern. If the
custom Var i abl eResol ver chose not to honor the decorator pattern, the user is stating that they want to take over
complete control of the variable resolution system. Note that the head of the Var i abl eResol ver chain is no longer
accessible by calling Appl i cati on. get Vari abl eResol ver () (Please see Chapter 7 “VariableResolver Property
for what it returns). The head of the Var i abl eResol ver chain is kept in an implementation specific manner.

| 5-20 JavaServer Faces Specification * June 2009vd

5.6.1.7

The semantics of the ELResolver that functions as the VariableResolver chain wrapper are described in the following
table.
TABLE 5.7 ELResolver that is the VariableResolver Chain Wrapper

ELResorver method implementation requirements
get Val ue If base is non-null, return null.
If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

O herw se, call setPropertyResol ved(true) on the
argunment ELCont ext .

Get the ELContext from the FacesContext.

Get the head of the Variabl eResol ver chain and call
resol veVari abl e(facesContext, property) and return
the result.

Catch any exceptions that may be thrown by

resol veVariabl e(), call setPropertyResol ved(false)
on the argunment ELContext, and rethrow the
exception wapped in an javax.el.ELException.

get Type If base is null and property is null, throw
Pr opert yNot FoundExcept i on.
return null;

set Val ue If base is null and property is null throw

Pr opert yNot FoundExcept i on.

i sReadOnl y If base is null and property is null throw
Pr opert yNot FoundExcept i on.

return fal se;

get Feat ur eDesc return null;

riptors
get CormonPr ope If base is null, we return String.class. If base is
rtyType non-null, return null;

PropertyResolver Chain Wrapper

This is the means by which pr opert yResol ver instances that have been specified in <pr operty-resol ver >
elements inside the application configuration resources are allowed to affect the EL resolution process. If there are one
or more <pr operty-resol ver > elements in the application configuration resources, an instance of ELResol ver
with the following semantics must be created and added to the Faces ELResolver for JSP Pages as indicated in the
Section TABLE 5-3 “Faces ELResolver for JSP Pages”.

By virtue of the decorator pattern described in Section 11.4.6 “Delegating Implementation Support”, the default
propertyResol ver will be at the end of the pr opert yResol ver chain (See, Section 5.8.2 “PropertyResolver and
the Default PropertyResolver”), if each custom pr opert yResol ver chose to honor the full decorator pattern. If the
custom pr opertyResol ver chose not to honor the decorator pattern, then the user is stating that they want to take
over complete control of the pr oper t yResol ut i on system. Note that the head of the pr opert yResol ver chain is
no longer accessible by calling Appl i cati on. get PropertyResol ver () (Please see Chapter 7 “PropertyResolver
Property for what it returns). The head of the property resolver chain is kept in an implementation specific manner.

The semantics of the ELResolver that functions as the property resolver chain wrapper are described in the following
table.

Chapter 5 Expression Language and Managed Bean Facility = 5-21

5.6.1.8

5.6.2

TABLE 5-8 ELResolver that is the PropertyResolver Chain Wrapper

ELResorver method implementation requirements

get Val ue, If base or property are null, return null (or false
get Type, if the nethod returns bool ean).

i sReadOnl y, Call setPropertyResol ved(true) on the argunent

set Val ue ELCont ext .

Get the ELContext from the FacesContext.

Get the head of the propertyResol ver chain.

If base is a List or java |anguage array, coerce
the property to an int and call the corresponding
met hod on the head of the property resolver chain
that takes an int for property, returning the
result (except in the case of setValue()).

O herwi se, call the corresponding nethod on the
head of the property resolver chain that takes an
Obj ect for property, returning the result (except
in the case of setValue()).

If an Exception is thrown by calling the above
met hods on the PropertyResolver chain, catch it,
call setPropertyResol ved(fal se) on the argunent
ELContext, and rethrow the Exception w apped
(snuggly) in a javax.el.ELException.

get Feat ur eDesc return null;

riptors
get CommonPr oper If base is null, return null. If base is non-null,
tyType return Qbject.cl ass.

ELResolvers from Application.addELResolver()

Any such resolvers are considered at this point in the Faces ELResolver for JSP Pages in the order in which they were
added.

ELResolver for Facelets and Programmatic Access

This section documents the requirements for the second ELResol ver mentioned in Section 5.6 “ELResolver Instances
Provided by Faces”, the one that is used for Facelets and for programmatic expression evaluation from Faces java code.

The implementation for the ELResolver for Programmatic Access is described as a set of ELResol ver s inside of a
Conposi t eELResol ver instance, but any implementation strategy is permissible as long as the semantics are
preserved. .

This diagram shows the set of ELResol ver instances that must be added to the ELResolver for Programmatic Access.
This instance must be returned from Appl i cati on. get ELResol ver () and

FacesCont ext . get ELCont ext (). get ELResol ver (). It also shows the order in which they must be added. [P1-
start there are 12 methods in the below tables that can be tested for assertion. The remainder of the section is covered by
the tests in 5.6.1][P1-end]

TABLE 59 ELResol ver for Facelets and Programmatic Access

| 5-22 JavaServer Faces Specification * June 2009vd

5.6.2.1

' ELResoclver for Facelets and Programmatic Access'

—‘ faces.ImplicitObjectELResclverForFaces '

—‘ faces.CompositeComponentAttributesELResolver '

—' el . CompositeELResolver '

—‘ El Resolvers from application configuration resources '

faces .VariableResolverChainWrapper
Supports legacy jsf.VVariable Resolvers,

faces . PropertyResolverChainWrapper
Supports legacy jsf.PropertyResolvers,

—‘ El Resolvers from Application.addEL Resolver() '
—' faces . ManagedBeanELResolver '

—' faces . ResourceELResolver '

—' el . ResourceBundleELResolver '

—' faces. ResocurceBundl eEI.Resolver.

el. . MapELResolver

_;
el .ArrayELResolver

—‘ el . BeanELResolver '

_‘ faces.ScopedAttributeELResolver '

The semantics of each ELResol ver are given below, either in tables that describe what must be done to implement
each particular method on ELResol ver, in prose when such a table is inappropriate, or as a reference to another section
where the semantics are exactly the same.

Implicit Object ELResolver for Facelets and Programmatic Access

This resolver differs from the one in the Section 5.6.1.1 “Faces Implicit Object ELResolver For JSP” in that it must
resolve all of the implicit objects, not just f acesCont ext and vi ew

Chapter 5 Expression Language and Managed Bean Facility 5-23

TABLE 5-10 ImplicitObjectELResolver for Programmatic Access

| 5-24 JavaServer Faces Specification * June 2009vd

ELResolver method

implementation requirements

get Val ue

If base is non-null, return null.

If base is null and property is null, throw
Pr opert yNot FoundExcept i on.

If base is null and property is a String equal to
inmplicitObject, call setPropertyResol ved(true) on
the argunent ELContext and return result, where
implicitObject and result are as foll ows:

inmplicitCbject -> result
application -> external Context.getContext()
appl i cati onScope ->

ext er nal Cont ext . get Appl i cati onMap()

conponent -> the conponent nost recently pushed to
Ul Conmponent . pushConponent ToEL()

cc -> the conponent returned from
Ul Conmponent . get Cur r ent Conposi t eConponent () .

cooki e -> external Context.getRequest Cooki eMap()
facesContext -> the FacesContext for this request

conponent -> the top of the stack of Ul Conmponent

i nstances, as pushed via calls to

Ul Conponent . pushConponent TOEL(). See Section 3.1.14
“Li fecycl e Managenment Met hods”

flash -> external Context.getFlash()
header -> external Cont ext. get Request Header Map()

header Val ues ->
ext er nal Cont ext . get Request Header Val uesMap()

i nitParam -> external Context.getlnitParaneterMp()
param -> ext ernal Cont ext . get Request Par anet er Map()

par anval ues ->
ext er nal Cont ext . get Request Par anet er Val uesMap()

request -> external Context.getRequest ()
request Scope -> external Context.get Request Map()

resource ->

facesCont ext . get Appl i cation(). get ResourceHandl er ()
sessi on -> external Context.getSession()

sessi onScope -> external Cont ext. get Sessi onMap()
view -> facesContext. get Vi ewRoot ()

vi ewScope ->

f acesCont ext . get Vi ewRoot () . get Vi ewVap()

resource ->
facesCont ext . get Appl i cation(). get ResourceHandl er ()

If base is null, and property doesn’'t match one of
the above inplicitOojects, return null.

Chapter 5 Expression Language and Managed Bean Facility

5-25

ELResolver method implementation requirements

get Type

set Val ue

i sReadOnl y

If base is non-null, return null.

If base is null and property is null, throw
Pr opert yNot FoundExcept i on.

If base is null and property is a String equal

“application”, “conponent”, “cc”, “cookie”,
“facesContext”, “header”, *“headerVal ues”,
“initParan’, “paranf, “paranValues”, “request”,
“resource”, “session”, or “view', call

to

set PropertyResol ved(true) on the argunent ELCont ext

and return null to indicate that no types are
accepted to setValue() for these attributes.
If base is null and property is a String equal
“request Scope”, “sessionScope”, or

to

“applicationScope”, call setPropertyResol ved(true)

on the argunment ELContext and return null.
QG herwi se, null;

If base is non-null, return null.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

If base is null and property is a String equal to
“applicationScope”, “requestScope”, “sessionScope”,
“application”, “conponent”, “cc”, “cookie",
“facesContext”, “header”, “headerVal ues”,
“initParant, “paranf, “paranValues”, “request”,
“resource”, “session”, or “view', throw

javax. el . PropertyNot Wit eabl eException, since these

implicit objects are read-only.
O herwise return null.

If base is non-null, return (or false if the nethod

returns bool ean).

If base is null and property is null, throw
Pr opert yNot FoundExcept i on.

If base is null and property is a String equal to
“applicationScope”, “conponent”, *“cc”,

“request Scope”, “sessionScope”, “application”,
“cooki e”, “facesContext”, “header”, “headerVal ues”,
“initParant, “paranf, “paranValues”, “request”,
“resource”, “session”, or “view', call

set PropertyResol ved(true) on the argunment ELCont ext

and return true.
QO herwise return null.

| 526

JavaServer Faces Specification « June 2009vd

5.6.2.2

ELResolver method

implementation requirements

get Feat ur eDesc
riptors

get CormonPr ope
rtyType

If base is non-null, return null.

If base is null, return an Iterator containing 17
j ava. beans. Feat ureDescri ptor instances, one for
eath of the follow ng properties: application,
conponent, cc, cookie, facesContext, header,

header Val ues, initParam param paranval ues,
request, resource, session, view, applicationScope,
sessi onScope, and requestScope. It is required that
all of these FeatureDescriptor instances set

Bool ean. TRUE as the value of the

ELResol ver. RESOLVABLE_AT _DESI GN_TI ME attri bute. For
the name and short of FeatureDescriptor, return the
implicit object name. The appropriate C ass nust be
stored as the value of the ELResolver. TYPE
attribute as follows:

inplicitObject -> ELResolver.TYPE val ue
application -> bject.class

appl i cati onScope -> Map. cl ass
conmponent -> Ul Conponent. cl ass

cc -> U Component.cl ass

cooki e -> Map.class

facesContext -> FacesContext.class
header -> Map.cl ass

header Val ues -> Map. cl ass

i nitParam -> Map. cl ass

param -> Map. cl ass

par anval ues -> Map.cl ass

request -> Object.class

resource -> bject.class

request Scope -> Map.cl ass

session -> bject.class

sessi onScope -> Map. cl ass

view -> Ul Vi ewRoot . cl ass

The shortDescription nust be a suitable description
depending on the inplenentation. The expert and

hi dden properties nmust be false. The preferred
property nust be true.

If base is non-null, return null.
If base is null and return String.class

Composite Component Attributes ELResolver

This ELResolver makes it so expressions that refer to the attributes of a composite component get correctly evaluated.
For example, the expression #{ cc. attrs. user naneLabel } says, “find the current composite component, call its
get Attri but es() method, within the returned Map look up the value under the key “usernameLable”. If the value is
a Val ueExpr essi on, call get Val ue() on it and the result is returned as the evaluation of the expression.
Otherwise, if the value is not a Val ueExpr essi on the value itself is returned as the evaluation of the expression.”

Chapter 5 Expression Language and Managed Bean Facility 5-27

TABLE 5-11 Composite Component Attributes ELResolver

ELResolver method implementation requirements

get Val ue If base is non-null, is an instance of Ul Conponent,
is a conposite component, and property is non-null
and is equal to the string “attrs”, return a Map
implementation with the follow ng characteristics.

Wap the attributes map of the conposite conponent
and delegate all calls to the conposite conponent
attributes map with the follow ng exceptions:
get(): if the result of calling get() on the
conposite conponent attributes map is a

Val ueExpression, call getValue() on it and return
the result.

put(): call get() on the attributes map, using the
argunment key to put() as the argunment to get(). If
the result is a Val ueExpression, call setValue() on
t he Val ueExpressi on, passing the value argunent to
put() as the second argunment to setVal ue().

The Map inplenentation nust also inplenent the

interface
j avax. faces. el . Conposi t eConponent Expr essi onHol der .
If base is non-null, is an instance of Ul Conponent,

is a conposite component, and property is non-null
and is equal to the string “parent”, call the
static nethod

Ul Conponent . get Conposi t eConponent Parent () passi ng
base as the argunent, returning the result.

O herw se, take no action.

get Type return null.
set Val ue Take no action.
i sReadOnl y Take no action and return true.

get Feat ur eDesc Take no action.

riptors
get CommonPr ope Return String.class
rtyType

5.6.2.3 The CompositeELResolver

As indicated in Section TABLE 5-9 “ELResolver for Facelets and Programmatic Access”, following the
ImplicitObjectELResolver, the semantics obtained by adding a Conposi t eELResol ver must be inserted here. This
ELResol ver contains the following ELResol ver s, described in the referenced sections.

1. Section 5.6.1.5 “ELResolvers in the application configuration resources”
2. Section 5.6.1.6 “VariableResolver Chain Wrapper”
3. Section 5.6.1.7 “PropertyResolver Chain Wrapper”

4. Section 5.6.1.8 “ELResolvers from Application.addELResolver()”

| 5-28 JavaServer Faces Specification * June 2009vd

5.6.2.4 ManagedBean ELResolver

This resolver has the same semantics as the one in Section 5.6.1.2 “ManagedBean ELResolver”.

5.6.2.5 Resource ELResolver

This resolver is a means by which Resour ce instances are encoded into a faces request such that a subsequent faces
resource request from the browser can be satisfied using the Resour ceHandl| er as described in Section 2.6 “Resource
Handling”.

TABLE 5-12 ResourceELResolver

ELResorver method implementation requirements
get Val ue If base and property are not null, and base is an
instance of ResourceHandler (as will be the case

with an expression such as #{resource['ajax.js’]},
performthe following. (Note: This is possible due
to the InplicitCbjectELResol ver returning the
Resour ceHandl er, see Section 5.6.2.1 “Inplicit

bj ect ELResol ver for Facelets and Programmatic
Access”)

= If property does not contain a colon
character ‘:’, treat pr operty as the
resourceName and pass property to
Resour ceHandl er . cr eat eResour ce(
resour ceNane) .

= If property contains a single colon
character :’, treat the content before the “:” as
the libraryName and the content after the ‘:’
as the resourceName and pass both to
Resour ceHandl er . cr eat eResour ce(
resourceNane, |ibraryNane)

= If property contains more than one colon

character ‘:’, throw a localized

ELExcepti on, including property.
If one of the above steps results in the creation
of a non-null Resource instance, call
ELCont ext . set PropertyResol ved(true) and return the
result of calling the getRequestPath() nethod on
the Resource instance.

get Type Return null. This resolver only perforns | ookups.
set Val ue Take no action.

i sReadOnl y Return false in all cases.

get Feat ur eDesc Return null.

riptors

get CormonPr ope If base is non-null, return null.

rtyType If base is null, return Qbject.class.

Chapter 5 Expression Language and Managed Bean Facility = 5-29

5.6.2.6

5.6.2.7

5.6.2.8

5.6.2.9

el.ResourceBundleELResolver

This entry in the chain must have the semantics the same as the class j avax. el . Resour ceBundl eELResol ver.
The default implementation just includes an instance of this resolver in the chain.

ResourceBundle ELResolver for Programmatic Access

»

This resolver has the same semantics as the one in Section 5.6.1.4 “ResourceBundle ELResolver for JSP Pages”.

Map, List, Array, and Bean ELResolvers

These ELResolver instances are provided by the Unified EL API and must be added in the following order:

j avax. el . MapELResol ver, javax.el.ListELResolver, javax.el.ArrayELResol ver,

j avax. el . BeanELResol ver. These actual ELResolver instances must be added. It is not compliant to simply add
other resolvers that preserve these semantics.

ScopedAttribute ELResolver

This ELResolver is responsible for doing the scoped lookup that makes it possible for expressions to pick up anything
stored in the request, session, or application scopes by name.

| 5-30 JavaServer Faces Specification * June 2009vd

TABLE 5-13 Scoped Attribute ELResolver

ELResorver method

implementation requirements

get Val ue

get Type

set Val ue

i sReadOnl y

get Feat ur eDesc
riptors

get CormonPr ope
rtyType

If base is non-null, return null.

If base is null and property is null, throw

Pr opert yNot FoundExcept i on.

Use the argunent property as the key in a call to
ext er nal Cont ext . get Request Map().get(). If this
returns non-null, call setPropertyResol ved(true) on
the argunent ELContext and return the val ue.

Use the argunent property as the key in a call to
ext er nal Cont ext . get Sessi onMap().get(). If this
returns non-null, call setPropertyResolved(true) on
the argunent ELContext and return the val ue.

Use the argunent property as the key in a call to
ext er nal Cont ext . get ApplicationMap().get(). If this
returns non-null, call setPropertyResol ved(true) on
the argunent ELContext and return the val ue.

O herwi se call setPropertyResl oved(true) and return
nul | ;

If base is non-null, return null.

If base is null and property is null, throw
Pr opert yNot FoundExcept i on.

O herw se, setPropertyResol ved(true) and return
bject.class to indicate that any type is
perm ssable to pass to a call to setValue().

If base is non-null, return null.

If base is null and property is null, throw
Pr opert yNot FoundExcepti on.

Consult the Maps for the request, session, and
application, in order, looking for an entry under
the key property. If found, replace that entry with
argument value. |f not found, call

ext er nal Cont ext . get Request Map() . put (property,

val ue).

Cal | setPropertyResol ved(true) and return;

If base is false, setPropertyResolved(true) return
fal se;

O herwi se, return false;

If base is non-null, return null.

If base is null, return an lterator of

j ava. beans. Feat ureDescri ptor instances for all
attributes in all scopes. The FeatureDescriptor
nane and shortNanme is the nane of the scoped
attribute. The actual runtime type of the attribute
must be stored as the value of the ELResol ver. TYPE
attribute. Bool ean. TRUE nmust be set as the val ue of
the ELResol ver. RESOLVABLE_AT_DESI GN_TI ME attri bute.
The shortDescription nust be a suitable description
depending on the inplenentation. The expert and

hi dden properties nmust be false. The preferred
property nust be true.

If base is non-null, return null.
If base is null return String.class.

Chapter 5 Expression Language and Managed Bean Facility

5-31

5.7

5.7.1

5.7.2

5.7.3

5.7.4

5.8

Current Expression Evaluation APIs

ELResolver

This class is the Unified EL’s answer to Faces’s Var i abl eResol ver and Pr opert yResol ver. It turns out that
variable resolution can be seen as a special case of property resolution with the base object being nul | . Please see
Section 5.5.2 “ELResolver” for more details.

ValueExpression

This class is the Unified EL’s answer to Faces’s Val ueBi ndi ng. It is the main object oriented abstraction for al EL
expression that results in a value either being retrieved or set. Please see Chapter 2 of the Expression Language
Specification, Version 2.1.

MethodExpression

This class is the Unified EL’s answer to Faces’s Met hodBi ndi ng. It is the main object oriented abstraction for al EL
expression that results in a method being invoked. Please see Chapter 2 of the Expression Language Specification,
Version 2.1.

Expression Evaluation Exceptions

Four exception classes are defined to report errors related to the evaluation of value exceptions:

= javax. el . ELExcepti on (which extends j ava. | ang. Except i on)—used to report a problem evaluating a
value exception dynamically.

= Met hodNot FoundExcept i on (which extends j avax. el . ELExcept i on)—used to report that a requested
public method does not exist in the context of evaluation of a method expression.

= javax. el . PropertyNot FoundExcepti on (which extends j avax. el . ELExcept i on)—used to report that a
requested property does not exist in the context of evaluation of a value expression.

= javax.el.PropertyNot Witeabl eExcepti on (which extends j avax. el . ELExcepti on)—used to
indicate that the requested property could not be written to when evaluating the expression.

Deprecated Expression Evaluation APIs

Applications written for version 1.0 and 1.1 of the Faces specification must continue to run in this version of the

specification. This means deprecated APIs. This section describes the migration story for these APIs that
implementations must follow to allow 1.0 and 1.1 based applications to run.

| 5-32 JavaServer Faces Specification * June 2009vd

5.8.1

5.8.2

5.8.3

VariableResolver and the Default VariableResolver

User-provided VariableResolver instances will still continue to work by virtue of Section 5.6.1.6 “VariableResolver
Chain Wrapper”. The decorator pattern described in Section 11.4.6 “Delegating Implementation Support” must be
supported. Users wishing to affect EL resolution are advised to author a custom ELResolver instead. These will get
picked up as specified in Section 5.6.1.5 “ELResolvers in the application configuration resources”.

The JSF implementation must provide a default Var i abl eResol ver implementation that gets the ELCont ext from
the argument FacesCont ext and calls set Propert yResol ved(f al se) on it

The Var i abl eResol ver chain is no longer accessible from Appl i cati on. get Vari abl eResol ver (). The
chain must be kept in an implementation dependent manner, but accessible to the ELResolver described in
Section 5.6.1.6 “VariableResolver Chain Wrapper”.

PropertyResolver and the Default PropertyResolver

User-provided propertyResolver instances will still continue to work by virtue of Section 5.6.1.6 “VariableResolver
Chain Wrapper”. The decorator pattern described in Section 11.4.6 “Delegating Implementation Support” must be
supported. Users wishing to affect EL resolution are advised to author a custom ELResolver instead. These will get
picked up as specified in Section 5.6.1.5 “ELResolvers in the application configuration resources” .

The JSF implementation must provide a default pr opert yResol ver implementation that gets the ELCont ext from
the argument FacesCont ext and calls set Propert yResol ved(f al se) on it.

The Pr oper t yResol ver chain is no longer accessible from Appl i cati on. get propertyResol ver (). The
chain must be kept in an implementation dependent manner, but accessible to to the ELResolver described in
Section 5.6.1.7 “PropertyResolver Chain Wrapper”.

ValueBinding

The Val ueBi ndi ng class encapsulates the actual evaluation of a value binding. Instances of Val ueBi ndi ng for
specific references are acquired from the Appl i cat i on instance by calling the cr eat eVal ueBi ndi ng method (see
Section 7.9.3 “Acquiring ValueBinding Instances”).

public Object getVal ue(FacesContext context) throws
Eval uati onExcepti on, PropertyNot FoundExcepti on;

Evaluate the value binding used to create this Val ueBi ndi ng instance, relative to the specified FacesCont ext , and
return the referenced value.

public void setVal ue(FacesCont ext context, Cbject value) throws
Eval uati onExcepti on, PropertyNot FoundExcepti on;

Evaluate the value binding used to create this Val ueBi ndi ng instance, relative to the specified FacesCont ext, and
update the referenced value to the specified new value.

publi ¢ bool ean i sReadOnl y(FacesCont ext context) throws
Eval uati onExcepti on, PropertyNot FoundExcepti on;

Chapter 5 Expression Language and Managed Bean Facility 5-33

5.84

5.8.5

Evaluate the value binding used to create this Val ueBi ndi ng instance, relative to the specified FacesCont ext , and
return t r ue if the corresponding property is known to be immutable. Otherwise, return f al se.

public C ass get Type(FacesCont ext context) throws
Eval uati onExcepti on, PropertyNot FoundExcepti on;

Evaluate the value binding used to create this Val ueBi ndi ng instance, relative to the specified FacesCont ext , and
return the Cl ass that represents the data type of the referenced value, if it can be determined. Otherwise, return nul | .

MethodBinding

The Met hodBi ndi ng class encapsulates the actual evaluation of a method binding. Instances of Met hodBi ndi ng for
specific references are acquired from the Appl i cat i on instance by calling the cr eat eMet hodBi ndi ng() method.

Note that instances of Met hodBi ndi ng are immutable, and contain no references to a FacesCont ext (which is
passed in as a parameter when the reference binding is evaluated).

publ i c Obj ect i nvoke(FacesCont ext context, Object parans[]) throws
Eval uati onExcepti on, Met hodNot FoundExcepti on;

Evaluate the method binding (see Section 5.2.1 “MethodExpression Syntax and Semantics”) and call the identified
method, passing the specified parameters. Return any value returned by the invoked method, or return nul | if the
invoked method is of type voi d.

public O ass get Type(FacesCont ext context) throws
Met hodNot FoundExcept i on;

Evaluate the method binding (see Section 5.2.1 “MethodExpression Syntax and Semantics”) and return the Cl ass
representing the return type of the identified method. If this method is of type voi d, return nul | instead.

Expression Evaluation Exceptions

Four exception classes are defined to report errors related to the evaluation of value exceptions [Note that these
exceptions are deprecated]:

= Eval uati onExcepti on (which extends FacesExcept i on)—used to report a problem evaluating a value
exception dynamically.

= Met hodNot FoundExcept i on (which extends Eval uat i onExcept i on)—used to report that a requested public

method does not exist in the context of evaluation of a method expression.

= PropertyNot FoundExcepti on (which extends Eval uat i onExcepti on)—used to report that a requested
property does not exist in the context of evaluation of a value expression.

= Ref erenceSynt axExcepti on (which extends Eval uati onExcepti on)—used to report a syntax error in a
value exception.

| 5-34 JavaServer Faces Specification * June 2009vd

Per-Request State Information

During request processing for a JSF page, a context object is used to represent request-specific information, as well as
provide access to services for the application. This chapter describes the classes which encapsulate this contextual
information.

6.1

6.1.1

6.1.2

FacesContext

JSF defines the j avax. f aces. cont ext . FacesCont ext abstract base class for representing all of the contextual
information associated with processing an incoming request, and creating the corresponding response. A

FacesCont ext instance is created by the JSF implementation, prior to beginning the request processing lifecycle, by a
call to the get FacesCont ext method of FacesCont ext Fact ory, as described in Section 6.6
“FacesContextFactory”. When the request processing lifecycle has been completed, the JSF implementation will call the
r el ease method, which gives JSF implementations the opportunity to release any acquired resources, as well as to pool
and recycle FacesCont ext instances rather than creating new ones for each request.

Application

public Application getApplication();

[P1-start-application]The JSF implementation must ensure that the Appl i cat i on instance for the current web
application is available via this method, as a convenient alternative to lookup via an Appl i cat i onFact ory.[Pl-end]

Attributes

public Map<Qnbj ect, Qbj ect> get Attributes();

[P1-start-attributes]Return a mutable Map representing the attributes associated wth this FacesCont ext instance. This
Map is useful to store attributes that you want to go out of scope when the Faces lifecycle for the current request ends,
which is not always the same as the request ending, especially in the case of Ser vl et filters that are invoked after the
Faces lifecycle for this request completes. Accessing this Map does not cause any events to fire, as is the case with the
other maps: for request, session, and application scope.[P1-end]

Chapter 6 Per-Request State Information ~ 6-1

6.1.3

6.1.4

ELContext

publ i c ELCont ext get ELContext();

Return the ELCont ext instance for this FacesCont ext instance. This ELCont ext instance has the same lifetime
and scope as the FacesCont ext instance with which it is associated, and may be created lazily the first time this
method is called for a given FacesCont ext instance. [P1-start-elcontext]Upon creation of the ELContext instance, the
implementation must take the following action:

= Call the ELCont ext . put Cont ext (j ava. | ang. C ass, java.l ang. Obj ect) method on the instance,
passing in FacesCont ext . cl ass and the t hi s reference for the FacesCont ext instance itself.

= If the Col | ecti on returned by j avax. f aces. Appl i cati on. get ELCont ext Li st ener s() is non-empty,
create an instance of ELCont ext Event and pass it to each ELCont ext Li st ener instance in the Col | ecti on
by calling the ELCont ext Li st ener. cont ext Cr eat ed(j avax. el . ELCont ext Event) method.[P1-end]

ExternalContext

It is sometimes necessary to interact with APIs provided by the containing environment in which the JavaServer Faces
application is running. In most cases this is the servlet API, but it is also possible for a JavaServer Faces application to
run inside of a portlet. JavaServer Faces provides the Ext er nal Cont ext abstract class for this purpose. [P1-start-
externalContext]This class must be implemented along with the FacesCont ext class, and must be accessible via the
get Ext er nal Cont ext method in FacesCont ext .[P1-end]

publ i ¢ External Cont ext get External Context();

[P1-start externalContext during Init] The default implementation must return a valid value when this method is called
during startup time. See the javadocs for this method for the complete specification. [P1-end]

The Ext er nal Cont ext instance provides immediate access to all of the components defined by the containing
environment (servlet or portlet) within which a JSF-based web application is deployed. The following table lists the
container objects available from Ext er nal Cont ext . Note that the Access column refers to whether the returned
object is mutable. None of the properties may be set through Ext er nal Cont ext . itself.

Name Access Type Description

appl i cati onMap RW java.util.Mp The application context
attributes for this application.

aut hType RO String The method used to
authenticate the currently
logged on user (if any).

cont ext RW Obj ect The application context object
for this application.

i ni t Paranet er Map RO java.util.Mp The context initialization
parameters for this application

renot eUser RO String The login name of the
currently logged in user (if
any).

request RW oj ect The request object for this
request.

r equest Cont ext Pat h RO String The context path for this
application.

| 6-2 JavaServer Faces Specification < June 2009

Name Access Type Description

request Cooki eMap RO java.util.Mp The cookies included with this
request.

r equest Header Map RO java.util.Mp The HTTP headers included
with this request (value is a
String).

request Header Val uesMap RO java.util.Map .The HTTP headers included
with this request (value is a
String array).

request Local e RW java.util. The preferred Locale for this

Local e request.
request Local es RW java.util. The preferred Locales for this
Iterator request, in descending order
of preference.

request Map RW java.util.Map The request scope attributes
for this request.

r equest Par armet er Map RO java.util.Mp The request parameters
included in this request (value
is a String).

r equest Par anet er Nanes RO I terator The set of request parameter
names included in this
request.

request Par anet er Val ues RO java.util.Map The request parameters

Map included in this request (value
is a String array).

request Pat hl nfo RO String The extra path information
from the request URI for this
request.

request Servl et Pat h RO String The servlet path information
from the request URI for this
request.

response RW oj ect The response object for the
current request.

sessi onMap RW java.util.Mp The session scope attributes
for this request”.

user Princi pal RO java.security. P The Principal object

rinci pal

containing the name of the
currently logged on user (if

any).

* Accessing attributes via this Map will cause the creation of a session associated with this request, if none currently exists.

See the JavaDocs for the normative specification.

Chapter 6 Per-Request State Information

6-3

6.1.4.1

6.1.5

6.1.6

Flash

The Fl ash provides a way to pass temporary objects between the user views generated by the faces lifecycle. Anything
one places in the flash will be exposed to the next view encountered by the same user session and then cleared out..

Name Access Type Description

flash R FI ash See the javadocs for the
complete specification.

ViewRoot

public U Vi ewRoot get Vi ewRoot ();

public void setVi ewRoot (Ul Vi ewRoot root);

During the Restore View phase of the request processing lifecycle, the state management subsystem of the JSF
implementation will identify the component tree (if any) to be used during the inbound processing phases of the
lifecycle, and call set Vi ewRoot () to establish it.

Message Queue

public void addMessage(String clientld, FacesMessage nessage);

During the Apply Request Values, Process Validations, Update Model Values, and Invoke Application phases of the
request processing lifecycle, messages can be queued to either the component tree as a whole (if cl i ent 1 d is nul |),
or related to a specific component based on its client identifier.

public Interator<String> getCientldsWthMessages();
public Severity get Maxi muntSeverity();
public Iterator<FacesMessage> get Messages(String clientld);

public Iterator<FacesMessage> get Messages();

[P1-start-messageQueue]The get Cl i ent | dsW t hMessages() method must return an | t er at or over the client
identifiers for which at least one Message has been queued. This method must be implemented so the clientlds are
returned in the order of calls to addMessage() . [P1- end] The get Maxi nunSeverity() method returns the
highest severity level on any Message that has been queued, regardless of whether or not the message is associated with
a specific client identifier or not. The get Messages(St ri ng) method returns an | t er at or over queued
Messages, either those associated with the specified client identifier, or those associated with no client identifier if the
parameter is nul | . The get Messages() method returns an | t er at or over all queued Messages, whether or not
they are associated with a particular client identifier. Both of the get Message() variants must be implemented such
that the messages are returned in the order in which they were added via calls to addMessage() .

For more information about the Message class, see Section 6.3 “FacesMessage”.

| 6-4 JavaServer Faces Specification < June 2009

6.1.7 RenderKit

public RenderKit getRenderKit();

Return the Render Ki t associated with the render kit identifier in the current Ul Vi ewRoot (if any).

6.1.8 ResponseStream and ResponseWriter

publ i ¢ ResponseStream get ResponseStrean);
public void set ResponseStreanm ResponseStream responseStreamn ;
publi c ResponseWiter getResponseWiter();
public void set ResponseWiter(ResponseWiter responseWiter);

public void enabl eResponseWiting(bool ean enabl e);

JSF supports output that is generated as either a byte stream or a character stream. Ul Conponent s or Render er s that
wish to create output in a binary format should call get ResponseStrean() to acquire a stream capable of binary
output. Correspondingly, Ul Conponent s or Render er s that wish to create output in a character format should call
get ResponseW it er () to acquire a writer capable of character output.

Due to restrictions of the underlying servlet APIs, either binary or character output can be utilized for a particular
response—they may not be mixed.

Please see Section 7.5 “ViewHandler” to learn when set ResponseW iter () and set ResponseStrean() are
called.

The enabl eResponseW i ti ng method is useful to enable or disable the writing of content to the current
ResponseW it er instance in this FacesCont ext. [Pl-start-enableWriting]If the enabl e argument is f al se,
content should not be written to the response if an attempt is made to use the current ResponseWiter.

6.1.9 Flow Control Methods

public void renderResponse();
public void responseConplete();
publi ¢ bool ean get Render Response();

publ i ¢ bool ean get ResponseConpl ete();

Normally, the phases of the request processing lifecycle are executed sequentially, as described in Chapter 2 “Request
Processing Lifecycle.” However, it is possible for components, event listeners, and validators to affect this flow by
calling one of these methods.

Chapter 6 Per-Request State Information 6-5

6.1.10

6.1.11

6.1.12

The r ender Response() method signals the JSF implementation that, at the end of the current phase (in other words,
after all of the processing and event handling normally performed for this phase is completed), control should be
transferred immediately to the Render Response phase, bypassing any intervening phases that have not yet been
performed. For example, an event listener for a tree control that was designed to process user interface state changes
(such as expanding or contracting a node) on the server would typically call this method to cause the current page to be
redisplayed, rather than being processed by the application.

The r esponseConpl et e() method, on the other hand, signals the JSF implementation that the HTTP response for
this request has been completed by some means other than rendering the component tree, and that the request processing
lifecycle for this request should be terminated when the current phase is complete. For example, an event listener that
decided an HTTP redirect was required would perform the appropriate actions on the response object (i.e. calling

Ext er nal Cont ext . redi rect ()) and then call this method.

In some circumstances, it is possible that both r ender Response() and r esponseConpl et e() might have been
called for the request. [P1-start-flowControl]In this case, the JSF implementation must respect the
responseConpl et e() call (if it was made) before checking to see if r ender Response() was called.[P1-end]

The get Render Response() and get ResponseConpl et e() methods allow a JSF-based application to determine
whether the renderResponse() or responseComplete() methods, respectively, have been called already for the current
request.

Partial Processing Methods

public Partial Vi ewCont ext getPartial Vi ewContext();

[P1-start-getpartial ViewContext]The get Par ti al Vi ewCont ext () method must return an instance of
Parti al Vi enCont ext either by creating a new instance, or returning an existing instance from the
FacesCont ext . [P1-end-getpartial Viewcontext]

Partial View Context

The Partial ViewContext contains the constants, properties and methods to facilitate partial view processing and partial
view rendering. Refer to Section 13.4.2 “Partial View Processing” and Section 13.4.3 “Partial View Rendering”. Refer to
the JavaDocs for the javax.faces.context.Partial ViewContext class for method requirements.

Access To The Current FacesContext Instance

public static FacesContext getCurrentlnstance();

protected static void setCurrentlnstance(FacesContext context);

Under most circumstances, JSF components, and application objects that access them, are passed a reference to the
FacesCont ext instance for the current request. However, in some cases, no such reference is available. The

get Current | nst ance() method may be called by any Java class in the current web application to retrieve an
instance of the FacesCont ext for this request. [P1-start-currentInstance]The JSF implementation must ensure that this
value is set correctly before FacesCont ext Fact or y returns a FacesCont ext instance, and that the value is
maintained in a thread-safe manner.[P1-end]

| 6-6 JavaServer Faces Specification < June 2009

6.1.13

6.1.14

[P1-start facesContextDuringInit] The default implementation must allow this method to be called during application
startup time, before any requests have been serviced. If called during application startup time, the instance returned must
have the special properties as specified on the javadocs for FacesCont ext . get Current I nst ance() The . [P1-
end]

CurrentPhaseld

The default lifecycle implementation is responsible for setting the cur r ent Phasel d property on the FacesCont ext
instance for this request, as specified in Section 2.2 “Standard Request Processing Lifecycle Phases”. The following table
describes this property.

Name Access Type Description

current Phasel d RW Phasel d The Phasel d constant for
the current phase of the
request processing lifecycle

ExceptionHandler

The FacesCont ext Fact ory ensures that each newly created FacesCont ext instance is initialized with a fresh
instance of Except i onHandl er, created from Except i onHandl er Fact or y.The following table describes this

property.

Name Access Type Description
except i onHandl er RW ExceptionHandl e Set by
r FacesCont ext Factory. g

et FacesCont ext (), this
class is the default exception
handler for any unexpected
Exceptions that happen during
the Faces lifecycle. See the
Javadocs for

Excepti onHandl er for
details.

Please see Section 12.3 “PhaseListener” for the circumstances under which Except i onHandl er is used.

6.2

ExceptionHandler

Except i onHandl er is the central point for handling unexpected Except i ons that are thrown during the Faces
lifecycle. The Except i onHandl er must not be notified of any Except i ons that occur during application startup or
shutdown.

Several places in the Faces specification require an Except i on to be thrown as a result of normal lifecycle processing.
[P1-start expected exceptions]The following expected Except i on cases must not be handled by the
ExceptionHandler.

= All cases where a Val i dat or Except i on is specified to be thrown or caught
= All cases where a Convert er Excepti on is specified to be thrown or caught

Chapter 6 Per-Request State Information 6-7

= The case when a MissingResourceException is thrown during the processing of the <f : | oadBundl e /> tag.

= If an exception is thrown when the runtime is processing the @ eDest r oy annotation on a managed bean.

All other Except i on cases must not be swallowed, and must be allowed to flow up to the Li f ecycl e. execut e()
method where the individual lifecycle phases are implemented. [P1-end expected exceptions] At that point, all
Except i ons are passed to the Except i onHandl er as described in Section 12.3 “PhaseListener”.

Any code that is not a part of the core Faces implementation may leverage the Excepti onHandl er in one of two
ways.

6.2.1 Default ExceptionHandler implementation

The default ExceptionHandler must implement the following behavior for each of its methods

publi c ExceptionEvent getHandl edExcepti onEvent();

Return the first “handled” Except i onEvent, that is, the one that was actually re-thrown.

public Iterabl e<Excepti onEvent> get Handl edExcepti onEvents();

The default implementation must return an | t er abl e over all Except i onEvent s that have been handled by the
handl e() method.

public Throwabl e get Root Cause(Throwabl e t);

Unwrap the argument t until the unwrapping encounters an Cbj ect whose get C ass() is not equal to
FacesException. cl ass or j avax. el . ELExcepti on. cl ass. If there is no root cause, nul | is returned.

public Iterabl e<Excepti onEvent> get Unhandl edExcepti onEvents();

Return an | t er abl e over all Except i onEvent s that have not yet been handled by the handl e() method.

public void handl e() throws FacesException;

Inspect all unhandled Except i onEvent instances in the order in which they were queued by calls to
Application. publi shEvent (Excepti onEvent. cl ass, eventContext).

For each Except i onEvent in the list, call its get Cont ext () method and call get Excepti on() on the returned
result. Upon encountering the first such Except i on that is not an instance of

j avax. faces. event . Abort Processi ngExcept i on, the corresponding Except i onEvent must be set so that
a subsequent call to get Handl edExcepti onEvent () or get Handl edExcepti onEvent s() returns that
Except i onEvent instance. The implementation must also ensure that subsequent calls to

get Unhandl edExcepti onEvent s() do not include that Except i onEvent instance. Let toRethrow be either the
result of calling get Root Cause() on the Excepti on, or the Except i on itself, whichever is non-nul | . Re-wrap
toThrow in a Ser vl et Excepti on or (Port| et Excepti on, if in a portlet environment) and throw it, allowing it to
be handled by any <er r or - page> declared in the web application deployment descriptor or by the default error page
as described elsewhere in this section.

There are two exceptions to the above processing rules. In both cases, the Except i on must be logged and not re-
thrown.

| 6-8 JavaServer Faces Specification < June 2009

6.2.2

6.2.3

= If an unchecked Excepti on occurs as a result of calling a method annotated with Pr eDest r oy on a managed
bean.

= If the Except i on originates inside the ELCont ext Li st ener. renoveEl Cont ext Li st ener () method

The FacesExcept i on must be thrown if and only if a problem occurs while performing the algorithm to handle the
Except i on, not as a means of conveying a handled Exception itself.

publi ¢ bool ean i sLi st ener For Sour ce(Cbj ect source);

The default implementation must return t r ue if and only if the source argument is an instance of
Excepti onEvent Cont ext .

public void processEvent (SystenEvent excepti onEvent) throws
Abor t Processi ngExcepti on;

The default implementation must store the argument except i onEvent in a strongly ordered queue for later processing
by the handl e() method.

Backwards Compatible ExceptionHandler

[P1-startPreJsf2ExceptionHandler]The runtime must provide an Except i onHandl er Fact or y implementation with
the fully qualified java classname of j avax. f aces. webapp. PreJsf 2Except i onHandl er Fact ory that creates
Except i onHandl er instances that behave exactly like the default Except i onHandl er except that the handl e()
method behaves as follows.

Versions of JSF prior to 2.0 stated in Section 12.3 “PhaseListener” “Any exceptions thrown during the

bef or ePhase() listeners must be caught, logged, and swallowed...Any exceptions thrown during the

af t er Phase() liseteners must be caught, logged, and swallowed.” The Pr eJsf 2Except i onHandl| er restores
this behavior for backwards compatibilty.

The implementation must allow users to install this Except i onHandl er Fact ory into the application by nesting
<excepti on- handl er -

factory>j avax. f aces. webapp. PreJsf 2Excepti onHandl er Fact or y</ except i on- handl er -

f act or y> inside the <factory> element in the application configuration resource.[P1-endPreJsf2ExceptionHandler]

Default Error Page

If no <err or - page> elements are declared in the web application deployment descriptor, the runtime must provide a
default error page that contains the following information.

= The stack trace of the Excepti on

= The Ul Conponent tree at the time the Excepti onEvent was handled.

= All scoped variables in request, view, session and application scope.

= If the error happens during the execution of the view declaration language page (VDL)
» The physical file being traversed at the time the Except i on was thrown, such as / user. xht m
» The line number within that physical file at the time the Except i on was thrown

» Any available error message(s) from the VDL page, such as: “The prefix "foz" for element "foz:bear" is not
bound.”

= The viewld at the time the Except i onEvent was handled

Chapter 6 Per-Request State Information 6-9

If Appl i cati on. get Proj ect St age() returns Pr oj ect St age. Devel opnent, the runtime must guarantee that
the above debug information is available to be included in any Facelet based error page using the <ui : i ncl ude />
with a sr c attribute equal to the string “j avax. faces. error. xhtm ”.

6.3 FacesMessage

Each message queued within a FacesCont ext is an instance of the
j avax. faces. appl i cati on. FacesMessage class. It offers the following constructors:

publi ¢ FacesMessage();
public FacesMessage(String sunmary, String detail);

publi ¢ FacesMessage(Severity severity, String summary, String
detail);

The following method signatures are supported to retrieve and set the properties of the completed message:

public String getDetail ();
public void setDetail (String detail);

public Severity getSeverity();
public void setSeverity(Severity severity);

public String getSunmmary();
public void set Summary(String sumary);

The message properties are defined as follows:

= det ai | —Localized detail text for this FacesMessage (if any). This will generally be additional text that can help
the user understand the context of the problem being reported by this FacesMessage, and offer suggestions for
correcting it.

= severity—A value defining how serious the problem being reported by this FacesMessage instance should be
considered. Four standard severity values (SEVERI TY_| NFO, SEVERI TY_WARN, SEVERI TY_ERRCR, and
SEVERI TY_FATAL) are defined as a typesafe enum in the FacesMessage class.

= summar y—Localized summary text for this FacesMessage. This is normally a relatively short message that
concisely describes the nature of the problem being reported by this FacesMessage.

6.4 ResponseStream

ResponseSt r eamis an abstract class representing a binary output stream for the current response. It has exactly the
same method signatures as the j ava. i 0. Qut put St r eamclass.

| 6-10 JavaServer Faces Specification * June 2009

6.5

Response Writer

ResponseW i t er is an abstract class representing a character output stream for the current response. A
ResponseW i t er instance is obtained via a factory method on Render Ki t. Please see Chapter 8 “RenderKit”. It
supports both low-level and high level APIs for writing character based information

public void close() throws | CException;

public void flush() throws | OCExcepti on;

public void wite(char c[]) throws | OException;

public void wite(char c[], int off, int len) throws |OException;
public void wite(int c) throws | OException;

public void wite(String s) throws | OException;

public void wite(String s, int off, int len) throws | OException;

The ResponseW i t er class extends j ava. i 0. Wi t er, and therefore inherits these method signatures for low-level
output. The cl ose() method flushes the underlying output writer, and causes any further attempts to output characters
to throw an | OExcept i on. The f | ush method flushes any buffered information to the underlying output writer, and
commits the response. The Wr i t € methods write raw characters directly to the output writer.

public abstract String getContentType();
public abstract String getCharacterEncoding();

Return the content type or character encoding used to create this ResponseWriter.

public void startCDATA();
public void endCDATA();

Start and end an XML CDATA Section..

public void startDocunent() throws | OException;
public void endDocunment () throws | OException;

Write appropriate characters at the beginning (st art Docunent) or end (endDocunent) of the current response.

public void startEl ement(String nanme, Ul Conponent
conponent For El enent) throws | OExcepti on;

Write the beginning of a markup element (the < character followed by the element name), which causes the
ResponseW i t er implementation to note internally that the element is open. This can be followed by zero or more
callstowiteAttribute orwiteURI Attri bute toappend an attribute name and value to the currently open
element. The element will be closed (i.e. the trailing > added) on any subsequent call to st art El ermrent (),
writeConment (), wri t eText (), endDocurent (), cl ose(), flush(),orwrite(). The

conponent For El ement parameter tells the ResponseW i t er which Ul Conponent this element corresponds to,

Chapter 6 Per-Request State Information 6-11

if any. This parameter may be null to indicate that the element has no corresponding component. The presence of this
parameter allows tools to provide their own implementation of ResponseW i t er to allow the design time environment
to know which component corresponds to which piece of markup.

public void endEl enent(String nanme) throws | OException;

Write a closing for the specified element, closing any currently opened element first if necessary.

public void witeComrent (Cbject comrent) throws | OException;

Write a comment string wrapped in appropriate comment delimiters, after converting the comment object to a St ri ng
first. Any currently opened element is closed first.

public void witeAttribute(String nane, Object value, String
conponent PropertyNane) throws | OExcepti on;

public void witeURI Attribute(String nanme, Cbject value, String
conponent PropertyNanme) throws | OException;

These methods add an attribute name/value pair to an element that was opened with a previous call to

start El ement (), throwing an exception if there is no currently open element. The wri t eAttri but e() method
causes character encoding to be performed in the same manner as that performed by the wri t eText () methods. The
witeURI Attribute() method assumes that the attribute value is a URI, and performs URI encoding (such as %
encoding for HTML). The conponent Pr oper t yNane, if present, denotes the property on the associated

Ul Conponent for this element, to which this attribute corresponds. The conponent Pr oper t yNanme parameter may
be null to indicate that this attribute has no corresponding property.

public void witeText(CObject text, String property) throws
| OExcepti on;

public void witeText(char text[], int off, int len) throws
| OExcepti on;

Write text (converting from Cbj ect to Stri ng first, if necessary), performing appropriate character encoding and
escaping. Any currently open element created by a call to st art El enent is closed first.

public abstract ResponseWiter cloneWthWiter(Witer witer);

Creates a new instance of this ResponseW i t er, using a different Wi ter.

| 6-12 JavaServer Faces Specification * June 2009

6.6

FacesContextFactory

[P1-start-facesContextFactory]A single instance of j avax. f aces. cont ext . FacesCont ext Fact or y must be
made available to each JSF-based web application running in a servlet or portlet container.[P1-end] This class is
primarily of use by JSF implementors—applications will not generally call it directly. The factory instance can be
acquired, by JSF implementations or by application code, by executing:

FacesCont ext Factory factory =
(FacesCont ext Fact ory)
Fact or yFi nder . get Fact or y(Fact or yFi nder. FACES_CONTEXT_FACTCRY) ;

pThe FacesCont ext Fact or y implementation class provides the following method signature to create (or recycle
from a pool) a FacesCont ext instance:

publ i ¢ FacesCont ext get FacesCont ext(Obj ect context, Object
request, Object response, Lifecycle lifecycle);

Create (if necessary) and return a FacesCont ext instance that has been configured based on the specified parameters.
In a servlet environment, the first argument is a Ser vl et Cont ext , the second a Ser vl et Request and the third a
Ser vl et Response.

6.7

ExceptionHandlerFactory

[P1-start-exceptionHandlerFactory]A single instance of j avax. f aces. cont ext . Excepti onHandl er Fact ory
must be made available to each JSF-based web application running in a servlet or portlet container.[P1-end] The factory
instance can be acquired, by JSF implementations or by application code, by executing:

Excepti onHandl er Factory factory =
(Excepti onHandl er Fact ory)

Fact or yFi nder . get Fact ory(Factory-

Fi nder . EXCEPTI ON_HANDLER_FACTCRY) ;

The Except i onHandl er Fact or y implementation class provides the following method signature to create an
Except i onHandl er instance:

publi ¢ ExceptionHandl er get Excepti onHandl er (FacesCont ext
current Cont ext);

Create and return a Except i onHandl er instance that has been configured based on the specified parameters.

Chapter 6 Per-Request State Information 6-13

6.8

ExternalContextFactory

[P1-start-externalContextFactory]A single instance of j avax. f aces. cont ext . Ext er nal Cont ext Fact or y must
be made available to each JSF-based web application running in a servlet or portlet container.[P1-end] This class is
primarily of use by JSF implementors—applications will not generally call it directly. The factory instance can be
acquired, by JSF implementations or by application code, by executing:

Ext er nal Cont ext Factory factory =
(Ext er nal Cont ext Fact ory)

Fact or yFi nder . get Fact ory(Factory-
Fi nder . EXTERNAL_CONTEXT_FACTCRY) ;

pThe Ext er nal Cont ext Fact or y implementation class provides the following method signature to create (or recycle
from a pool) a FacesCont ext instance:

publ i ¢ External Cont ext get External Cont ext ((Object context, nject
request, Cbject response);

Create (if necessary) and return an Ext er nal Cont ext instance that has been configured based on the specified
parameters. In a servlet environment, the first argument is a Ser vl et Cont ext , the second a Ser vl et Request and
the third a Ser vl et Response.

| 6-14 JavaServer Faces Specification « June 2009

Application Integration

Previous chapters of this specification have described the component model, request state information, and the next
chapter describes the rendering model for JavaServer Faces user interface components. This chapter describes APIs that
are used to link an application’s business logic objects, as well as convenient pluggable mechanisms to manage the
execution of an application that is based on JavaServer Faces. These classes are in the j avax. f aces. appl i cati on
package.

Access to application related information is centralized in an instance of the Appl i cat i on class, of which there is a
single instance per application based on JavaServer Faces. Applications will typically provide one or more
implementations of Acti onLi st ener (or a method that can be referenced by an act i on expression) in order to
respond to Act i onEvent events during the Apply Request Values or Invoke Application phases of the request
processing lifecycle. Finally, a standard implementation of Navi gat i onHandl er (replaceable by the application or
framework) is provided to manage the selection of the next view to be rendered.

7.1

7.1.1

Application

There must be a single instance of Appl i cati on per web application that is utilizing JavaServer Faces. It can be
acquired by calling the get Appl i cati on() method on the FacesCont ext instance for the current request, or the
get Appl i cati on() method of the Appl i cati onFact ory (see Section 7.2 “ApplicationFactory”), and provides
default implementations of features that determine how application logic interacts with the JSF implementation.
Advanced applications (or application frameworks) can install replacements for these default implementations, which
will be used from that point on. Access to several integration objects is available via JavaBeans property getters and
setters, as described in the following subsections.

ActionListener Property

public ActionListener getActionListener();

public void setActionListener(ActionListener |istener);

Return or replace an Act i onLi st ener instance that will be utilized to process Act i onEvent events during the
Apply Request Values or Invoke Application phase of the request processing lifecycle. [P1-start default ActionListener
requirements] The JSF implementation must provide a default implementation Act i onLi st ener that performs the
following functions:

= The processActi on() method must call FacesCont ext . r ender Response() in order to bypass any
intervening lifecycle phases, once the method returns.

= The processActi on() method must next determine the logical outcome of this event, as follows:

Chapter 7 Application Integration 7-1

7.1.2

7.1.3

7.1.4

« If the originating component has a non-null act i on property, retrieve the Met hodBi ndi ng and call i nvoke()
to perform the application-specified processing in this action method. If the method returns non-nul | , call
toString() on the result and use the value returned as the logical outcome. See Section 3.2.1.1 “Properties” for
a decription of the act i on property.

« Otherwise, the logical outcome is nul | .

= The processActi on() method must finally retrieve the Navi gat i onHandl er instance for this application, and
pass the logical outcome value (determined above) as a parameter to the handl eNavi gati on() method of the
Navi gat i onHandl er instance. [P1-end]

See the Javadocs for get Acti onLi st ener () for important backwards compatability information.

DefaultRenderKitld Property

public String getDefaultRenderKitld();

public void setDefaul tRenderKitld(String defaul tRenderKitld);

An application may specify the render kit identifier of the Render Ki t to be used by the Vi ewHandl er to render
views for this application. If not specified, the default render kit identifier specified by
Render Ki t Fact ory. HTML_BASI C_RENDER _KI T will be used by the default Vi ewHand| er implementation.

[P1-start defaultRenderKit called after startup] Unless the application has provided a custom Vi ewHandl er that
supports the use of multiple RenderKit instances in the same application, this method may only be called at application
startup, before any Faces requests have been processed. [P1-end] This is a limitation of the current Specification, and
may be lifted in a future release.

NavigationHandler Property

publ i ¢ Navi gati onHandl er get Navi gati onHandl er ();

public void set Navi gati onHandl er (Navi gati onHandl er handl er);

Return or replace the Navi gat i onHandl er instance (see Section 7.4 “NavigationHandler”) that will be passed the
logical outcome of the application Act i onLi st ener as described in the previous subsection. A default
implementation must be provided, with functionality described in Section 7.4.2 “Default NavigationHandler Algorithm”:

StateManager Property

public StateManager get StateManager();

public void set StateManager (St at eManager manager);

Return or replace the St at eManager instance that will be utilized during the Restore View and Render Response
phases of the request processing lifecycle to manage state persistence for the components belonging to the current view.
A default implementation must be provided, which operates as described in Section 7.7 “StateManager”.

| 7-2 JavaServer Faces Specification « June 2009

7.1.5

7.1.6

7.1.7

ELResolver Property

publi ¢ ELResol ver get ELResol ver();

public void addELResol ver (ELResol ver resol ver);

[N/T-start elresolver test] Return the ELResol ver instance to be used for all EL resolution. This is actually an instance
of j avax. el . Conposi t eELResol ver that must contain the ELResol ver instances as specified in Section 5.6.2
“ELResolver for Facelets and Programmatic Access”. [N/T-end]

[N/T-start addELResolver ordering] addELResol ver must cause the argument r esol ver to be added at the end of the
list in the j avax. el . Conposi t eELResol ver returned from get ELResol ver (). See the diagram in Section 5.6.2
“ELResolver for Facelets and Programmatic Access” [N/T-end]

ELContextListener Property

publ i ¢ addELCont ext Li st ener (ELCont ext Li st ener |istener);
public void renpveELCont ext Li st ener (ELCont ext Li stener |istener);

publi ¢ ELCont extLi stener[] get ELCont extLi steners();

addELCont ext Li st ener () registers an ELCont ext Li st ener for the current Faces application. This listener will be
notified on creation of ELCont ext instances, and it will be called once per request.

renoveELCont ext Li st ener () removes the argument | i st ener from the list of ELCont ext Li st eners. If
i stener isnull, no exception is thrown and no action is performed. If | i st ener is not in the list, no exception is
thrown and no action is performed.

get ELCont ext Li st ener s() returns an array representing the list of listeners added by calls to
addELCont ext Li st ener ().

ViewHandler Property

public Vi ewHandl er get Vi ewHandl er () ;

public void setVi ewHandl er (Vi ewHandl er handl er);

See Section 7.5 “ViewHandler” for the description of the ViewHandler. The JSF implementation must provide a default
Vi ewHandl er implementation. This implementation may be replaced by calling set Vi ewHandl er () before the first
time the Render Response phase has executed. [P1-start setViewHandler() called after startup] If a call is made to

set Vi ewHandl er () after the first time the Render Response phase has executed, the call must be ignored by the
implementation. [P1-end]

Chapter 7 Application Integration ~ 7-3

7.1.8

7.1.9

7.1.10

ProjectStage Property

public ProjectStage getProjectStage();

[P1-start getProjectStage]|This method must return the enum constant from the class
j avax. f aces. appl i cati on. Proj ect St age as specified in the corresponding application init parameter, JNDI entry,
or default Value. See Section 11.1.3 “Application Configuration Parameters”.[P1-end]

Acquiring ExpressionFactory Instance

publ i ¢ Expressi onFactory get Expressi onFactory();

Return the Expr essi onFact or y instance for this application. This instance is used by the eval uat eExpr essi onCet
(Section 7.1.10 “Progranmmatically Evaluating Expressions”) conveni ence nethod.

[P1-start getExpressionFactory requirements]| The default implementation simply returns the Expr essi onFact ory
from the JSP container by calling

JspFactory. get Def aul t Fact ory() . get JspAppl i cati onCont ext (ser vl et Cont ext) . get Expr essi onFac
tory().[Pl-end]

Programmatically Evaluating Expressions

public Object eval uateExpressi onCet (FacesContext context, String
expressi on, C ass expectedType)

Get a value by evaluating an expression.

Call get Expr essi onFactory() . creat eVal ueExpr essi on() passing the argument expr essi on and
expect edType. Call FacesCont ext . get ELCont ext () and pass it to Val ueExpr essi on. get Val ue(),
returning the result.

It is also possible and sometimes desireable to obtain the actual Val ueExpr essi on or Met hodExpr essi on instance
directly. This can be accomplished by using the cr eat eVal ueExpr essi on() or cr eat eMet hodExpr essi on()
methods on the Expr essi onFact ory returned from get Expr essi onFact ory() .

| 7-4 JavaServer Faces Specification « June 2009

7.1.11 Object Factories

The Appl i cat i on instance for a web application also acts as an object factory for the creation of new JSF objects such
as components, converters, validators and behaviors..

publi ¢ U Conponent createConponent (String conponent Type);
publi ¢ U Conponent createConponent (String conponent Type,
String rendererType);
public Converter createConverter(C ass targetC ass);
public Converter createConverter(String converterld);

public Validator createValidator(String validatorld);

publ i ¢ Behavi or createBehavior(String behaviorld);

Each of these methods creates a new instance of an object of the requested type!, based on the requested identifier. The
names of the implementation class used for each identifier is normally provided by the JSF implementation automatically
(for standard classes described in this Specification), or in one or more application configuration resources (see
Section 11.4 “Application Configuration Resources”) included with a JSF web application, or embedded in a JAR file
containing the corresponding implementation classes.

All variants cr eat eConvert er () must take some action to inspect the converter for @Resour ceDependency and
@i st ener For annotations.

publi ¢ U Conponent creat eConponent (Val ueExpr essi on
conponent Expressi on, FacesContext context, String conponent Type);

[P1-start createComponent(ValueExpression) requirements]| This method has the following behavior:

= Call the get Val ue() method on the specified Val ueExpr essi on, in the context of the specified
FacesCont ext . If this results in a non-null Ul Conponent instance, return it as the value of this method.

= [f the getValue() call did not return a component instance, create a new component instance of the specified
component type, pass the new component to the set Val ue() method of the specified Val ueExpr essi on, and
return it.[P1-end]

publ i ¢ U Conponent creat eConponent (FacesCont ext context, Resource
conponent Resour ce) ;

1. Converters can also be requested based on the object class of the value to be converted.

Chapter 7 Application Integration 7-5

7.1.11.1

All variants cr eat eConponent () must take some action to inspect the component for @Resour ceDependency
and @i st ener For annotations. Please see the JavaDocs and Section 3.6.2.1 “Composite Component Metadata” for
the normative specification relating to this method.

public void addConponent (String conmponent Type, String
conponent d ass) ;

public void addConverter(d ass targetC ass, String
converterd ass);

public void addConverter(String converterld, String
converterd ass);

public void addValidator(String validatorld, String
val i dat or Cl ass) ;

public void addBehavi or(String behaviorld, String behaviordC ass);

JSF-based applications can register additional mappings of identifiers to a corresponding fully qualified class name, or
replace mappings provided by the JSF implementation in order to customize the behavior of standard JSF features. These
methods are also used by the JSF implementation to register mappings based on <conponent >, <converter >,
<behavi or > and <val i dat or > elements discovered in an application configuration resource.

public Iterator<String> get Conponent Types();
public Iterator<String> getConverterlds();
public Iterator<C ass> get ConverterTypes();
public Iterator<String> getValidatorlds();

public Iterator<String> getBehaviorlds();

JSF-based applications can ask the Appl i cat i on instance for a list of the registered identifiers for components,
converters, and validators that are known to the instance.

Default Validator Ids

From the list of mappings of val i dat or | d to fully qualified class name, added to the application via calls to
addVal i dat or (), the application maintains a subset of that list under the heading of default validator ids. The
following methods provide access to the default validator ids registered on an application:

public void addDefaul tValidatorld(String validatorld);
public Map<String, String> getDefaultValidatorlnfo();

The required callsites for these methods are specified in Section 3.5.3 “Validation Registration”.

| 7-6 JavaServer Faces Specification * June 2009

7.1.12

7.1.13

7.1.13.1

Internationalization Support

The following methods and properties allow an application to describe its supported locales, and to provide replacement
text for standard messages created by JSF objects.

public Iterator<Local e> get SupportedLocal es();

public void set SupportedLocal es(Col | ecti on<Local e> newLocal es);
public Local e getDefaul tLocal e();

public void setDefaul tLocal e(Local e newLocal e);

JSF applications may state the Local es they support (and the default Local e within the set of supported Local es) in
the application configuration resources file. The setters for the following methods must be called when the configuration
resources are parsed. Each time the setter is called, the previous value is overwritten.

public String get MessageBundl e();

public void set MessageBundl e(String nessageBundl e);

Specify the fully qualified name of the ResourceBundle from which the JSF implementation will acquire message strings
that correspond to standard message keys See Section 2.5.2.4 “Localized Application Messages” for a list of the standard
message keys recognized by JSF.

System Event Methods

System events are described in Section 3.4.3 “System Events”. This section describes the methods defined on
Appl i cat i on that support system events

Subscribing to system events

publ i c abstract voi d subscri beToEvent (O ass<? ext ends Syst enEvent >
syst enEvent Cl ass, SystenEventListener |istener)

public abstract voi d subscri beToEvent (Cl ass<? ext ends Syst enEvent >
systenEvent Cl ass, C ass sourced ass, SystenEventLi stener
|istener);

public abstract void publishEvent (C ass<? extends SystenEvent >
syst enEvent C ass, SystenEventLi st ener Hol der source);

public void publishEvent (d ass<? extends SystenEvent>
systenEvent Cl ass, C ass<?> sourceBaseType, Object source)

The first variant of subscri beToEvent () subscribes argument | i St ener to have its i SLi st ener For Sour ce()
method, and (depending on the result from i SLi st ener For Sour ce()) its pr ocessEvent () method called any
time any call is made to Appl i cati on. publ i shEvent (Cl ass<? extends SystenkEvent>

systenEvent Cl ass, SystenEventLi stenerHol der source) where the first argument in the call to

publ i shEvent () is equal to the first argument to subscri beToEvent (). [Pl-start eventClassAndInheritance]
NOTE: The implementation must not support subclasses for the syst enEvent Cl ass and/or sour ceC ass
arguments to subscri beToEvent () or publ i shEvent () .[P1-end] For example, consider two event types,
Super Event and SubEvent extends Super Event . If a listener subscribes to Super Event . cl ass events, but
later someone publishes a SubEvent . cl ass event (which extends Super Event), the listener for

Super Event . cl ass must not be called.

Chapter 7 Application Integration 7-7

7.1.13.2

The second variant of subscri beToEvent () is equivalent to the first, with the additional constraint the the
sour ceC ass argument to publ i shEvent () must be equal to the Cl ass object obtained by calling get Cl ass()
on the sour ce argument to publ i shEvent ().

See the javadocs for both variants of subscri beFor Event () for the complete specification of these methods.

publ i shEvent () is called by the system at several points in time during the runtime of a JSF application. The
specification for when publ i shEvent () is called is given in the javadoc for the event classes that are listed in
Section 3.4.2.1 “Event Classes”. See the javadoc for publ i shEvent () for the complete specification.

Unsubscribing from system events

public abstract void unsubscribeFronEvent (C ass<? extends
Syst enEvent > systenEvent d ass, SystenEventListener |istener);
public abstract void unsubscribeFronEvent (C ass<? extends
Syst enEvent > systenEvent O ass, O ass sourced ass,

Syst enEvent Li stener |istener);

See the javadocs for both variants of unsubscri beFr omEvent () for the complete specification.

7.2

ApplicationFactory

A single instance of j avax. f aces. appl i cati on. Appl i cati onFact or y must be made available to each JSF-
based web application running in a servlet or portlet container. The factory instance can be acquired by JSF
implementations or by application code, by executing:

ApplicationFactory factory = (ApplicationFactory)
Fact or yFi nder . get Fact or y(Fact or yFi nder . APPLI CATI ON_FACTORY) ;

The Appl i cati onFact or y implementation class supports the following methods:

public Application getApplication();

public void setApplication(Application application);

Return or replace the Appl i cat i on instance for the current web application. The JSF implementation must provide a
default Appl i cati on instance whose behavior is described in Section 7.1 “Application”.

Note that applications will generally find it more convenient to access the Appl i cat i on instance for this application
by calling the get Appl i cati on() method on the FacesCont ext instance for the current request.

7.3

Application Actions

An application action is an application-provided method on some Java class that performs some application-specified

processing when an Act i onEvent occurs, during either the Apply Request Values or the Invoke Application phase of
the request processing lifecycle (depending upon the i mredi at e property of the Act i onSour ce instance initiating
the event).

| 7-8 JavaServer Faces Specification * June 2009

Application action is not a formal JSF API; instead any method that meets the following requirements may be used as an
Action by virtue of evaluating a method binding expression:

= The method must be public.
= The method must take no parameters.

» The method must return Obj ect .

The action method will be called by the default Act i onLi st ener implementation, as described in Section 7.1.1
“ActionListener Property” above. Its responsibility is to perform the desired application actions, and then return a logical
“outcome” (represented as a St ri ng) that can be used by a Navi gat i onHandl er in order to determine which view
should be rendered next. The action method to be invoked is defined by a Met hodBi ndi ng that is specified in the
act i on property of a component that implements Act i onSour ce. Thus, a component tree with more than one such
Act i onSour ce component can specify individual action methods to be invoked for each activated component, either
in the same Java class or in different Java classes.

7.4

7.4.1

NavigationHandler

Overview

A single Navi gat i onHandl er instance is responsible for consuming the logical outcome returned by an application
action that was invoked, along with additional state information that is available from the FacesCont ext instance for
the current request, and (optionally) selecting a new view to be rendered. If the outcome returned by the
applicationaction is nul | , and none of the navigation cases that map to the current view identifier have a non-null
condition expression, the same view must be re-displayed. This is a change from the old behavior. As of JSF 2.0, the
NavigationHandler is consulted even on a null outcome, but under this circumstance it only checks navigation cases that
do not specify an outcome (no <from-outcome>) and have a condition expression (specified with <if>). This is the only
case where the same view (and component tree) is re-used..

public void handl eNavi gati on(FacesCont ext context, String
fromAction, String outcone);

The handl eNavi gat i on method may select a new view by calling cr eat eVi ew() on the Vi ewHand| er instance
for this application, optionally customizing the created view, and then selecting it by calling the set Vi ewRoot ()
method on the FacesCont ext instance that is passed. Alternatively, the Navi gat i onHandl er can complete the
actual response (for example, by issuing an HTTP redirect), and call r esponseConpl et e() on the FacesCont ext
instance.

After a return from the handl eNavi gat i on method, control will normally proceed to the Render Response phase of
the request processing lifecycle (see Section 2.2.6 “Render Response”), which will cause the newly selected view to be
rendered. If the Navi gat i onHandl er called the r esponseConpl et e() method on the FacesCont ext instance,
however, the Render Response phase will be bypassed.

Prior to JSF 2, the NavigationHandler's sole task was to execute the navigation for a given scenario. JSF 2 introduces the
Confi gur abl eNavi gat i onHandl er interface, which extends the contract of the Navi gat i onHandl er to
include two additional methods that accomodate runtime inspection of the NavigationCases that represent the rule-based
navigation metamodel. The method get Navi gat i onCase consults the Navi gat i onHandl er to determine which
Navi gat i onCase the handl eNavi gat i on method would resolve for a given "from action" expression and logical

Chapter 7 Application Integration ~ 7-9

7.4.2

outcome combination. The method get Navi gat i onCases returns a java.util. Map of all the Navi gat i onCase
instances known to this Navi gat i onHandl er. Each key in the map is a from view ID and the cooresponding value is
a java.util.Set of NavigationCases for that from view ID.

public void get Navi gati onCase(FacesCont ext context, String
fromAction, String outcone);
public Map<String, Set<NavigationCase>> get Navi gati onCases();

[P1-start-configurablenavhandler]A JSF 2 compliant-implemention must ensure that its Navi gat i onHandl er
implements the Conf i gur abl eNavi gat i onHandl er interface. The handl eNavi gati on and

get Navi gat i onCase methods should use the same logic to resolve a Navi gat i onCase, which is outlined in the
next section.[P1-end]

Default NavigationHandler Algorithm

JSF implementations must provide a default Navi gat i onHand| er implementation that maps the action reference that
was utilized (by the default Act i onLi st ener implementation) to invoke an application action, the logical outcome
value returned by that application action, as well as other state information, into the view identifier for the new view to
be selected. The remainder of this section describes the functionality provided by this default implementation.

The behavior of the default Navi gat i onHandl er implementation is configured, at web application startup time, from
the contents of zero or more application configuration resources (see Section 11.4 “Application Configuration
Resources”). The configuration information is represented as zero or more <navi gat i on-r ul e> elements, each
keyed to a matching pattern for the view identifier of the current view expressed in a <f r om vi ew- i d> element. This
matching pattern must be either an exact match for a view identifier (such as “/index.jsp” if you are using the default
Vi ewHandl er), or the prefix of a component view id, followed by an asterisk (“*”) character. A matching pattern of
“*”_or the lack of a <f rom vi ew i d> element inside a <navi gat i on-r ul e> rule, indicates that this rule matches
any possible component view identifier.

Nested within each <navi gat i on-r ul e> element are zero or more <navi gat i on- case> elements that contain
additional matching criteria based on the action reference expression value used to select an application action to be
invoked (if any), and the logical outcome returned by calling the i nvoke() method of that application action?. As of
JSF 2, navigation cases support a condition element, <if>, whose content must be a single, contiguous value expression
expected to resolve to a boolean value (if the content does not match this requirement, the condition is ignored)3. When
the <if> element is present, the value expression it contains must evalute to true when the navigation case is being
consulted in order for the navigation case to match?. Finally, the <navigation-case> element contains a <to-view-id>
element, whose content is either the view identifier or a value expression that resolves to the view identifier. If the
navigation case is a match, this view identifier is to be selected and stored in the FacesContext for the current request
following the invocation of the NavigationHandler. See below for an example of the configuration information for the
default Navi gat i onHandl er might be configured.

It is permissible for the application configuration resource(s) used to configure the default Navi gat i onHandl er to
include more than one <navi gat i on-r ul e> element with the same <f r om vi ew- i d> matching pattern. For the
purposes of the algorithm described below, all of the nested <navi gat i on- case> elements for all of these rules shall
be treated as if they had been nested inside a single <navi gat i on-r ul e> element.

[P1-start navigation handler requirements] The default Navi gat i onHandl er implementation must behave as if it
were performing the following algorithm (although optimized implementation techniques may be utilized):

2. Itis an error to specify more than one <navigation-case>, nested within one or more <navigation-rule> elements with the same <from-view-id> matching
pattern, that have exactly the same combination of <from-xxx>, unless each is discriminated by a unique <if> element.

3. The presence of the <if> element in the absense of the <from-outcome> element is characterized as an alternate, contextual means of obtai
ning a logical outcome and thus the navigation case is checked even when the application action returns a a null (or void) outcome value.

4. Note that multiple conditions can be checked using the built-in operators and grouping provided by the Expression Language (e.g., and, or, not).

| 7-10 JavaServer Faces Specification + June 2009

If no navigation case is matched by a call to the handleNavigation() method, this is an indication that the current view
should be redisplayed. As of JSF 2.0, a null outcome does not unconditionally cause all navigation rules to be
skipped.

Find a <navi gat i on- r ul e> element for which the view identifier (of the view in the FacesCont ext instance
for the current request) matches the <f r om vi ew i d> matching pattern of the <navi gati on-r ul e>. Rule
instances are considered in the following order:

= An exact match of the view identifier against a <f r om vi ew- i d> pattern that does not end with an asterisk (“*”)
character.

« For <from vi ew i d> patterns that end with an asterisk, an exact match on characters preceding the asterisk
against the prefix of the view id. If the patterns for multiple navigation rules match, pick the longest matching
prefix first.

« If there is a <navi gati on-r ul e> with a <f r om vi ew- i d> pattern of only an asterisk, it matches any view
identifier.

From the <navi gat i on- case> elements nested within the matching <navi gat i on- r ul e> element, locate a
matching navigation case by matching the <f r om act i on> and <f r om out conme> values against the

fromAct i on and outcome parameter values passed to the handl eNavi gat i on() method. To match an outcome
value of null, the <f r om out conme> must be absent and the <i f > element present. Regardless of outcome value, if
the <i f > element is present, evaluate the content of this element as a value expression and only select the navigation
case if the expression resolves to true. Navigation cases are checked in the following order:

« Cases specifying both a <f rom act i on> value and a <f r om out cone> value are matched against the
act i on expression and out come parameters passed to the handl eNavi gati on() method (both parameters
must be not null, and both must be equal to the corresponding condition values, in order to match).

» Cases that specify only a <f r om out conme> value are matched against the out come parameter passed to the
handl eNavi gat i on() method (which must be not null, and equal to the corresponding condition value, to
match).

« Cases that specify only a <f rom act i on> value are matched against the act i on expression parameter passed
to the handl eNavi gat i on() method (which must be non-null, and equal to the corresponding condition value,
to match; if the <if> element is absent, only match a non-null outcome; otherwise, match any outcome).

= Any remaining case is assumed to match so long as the outcome parameter is non-null or the <if> element is
present.

» For cases that match up to this point and contain an <if> element, the condition value expression must be evaluated
and the resolved value true for the case to match.

If a matching <navi gat i on- case> element was located, and the <redirect/> element was not specified in this
<navigation-case> (or the application is running in a Portlet environment, where redirects are not possible), use the
<t 0- vi ew i d> element of the matching case to request a new Ul Vi ewRoot instance from the Vi ewHand| er
instance for this application, and pass it to the set Vi ewRoot () method of the FacesCont ext instance for the
current request. Then, exit the algorithm. If the content of <to-view-id> is a value expression, first evaluate it to
obtain the value of the view id.

If a matching <navi gat i on- case> element was located, and the <r edi r ect / > element was specified in this
<navi gat i on- case>, call get Redi rect URL() on the Vi ewHandl er, passing the current FacesCont ext ,
the <t 0- vi ew i d>, any name=value parameter pairs specified within <vi ew par an® elements within the

<r edi r ect > element, and the value of the i ncl ude- vi ew par ans attribute of the <r edi r ect /> element if
present, f al se, if not. The return from this method is the value to be sent to the client to which the redirect will
occurr. Call get Fl ash() . set Redi rect (true) on the current FacesCont ext . Cause the current response to
perform an HTTP redirect to this path, and call r esponseConpl et e() on the FacesCont ext instance for the
current request. If the content of <to-view-id> is a value expression, first evaluate it to obtain the value of the view id.

If no matching <navi gat i on- case> element was located, return to Step 1 and find the next matching
<navi gati on-rul e> element (if any). If there are no more matching rule elements, execute the following
algorithm to search for an implicit match based on the current out comne.

« Let out cone be viewldToTest.

5. Or, equivalently, with no <f r om vi ew i d> element atall.

Chapter 7 Application Integration 7-11

« Examine the viewldToTest for the presence of a “?” character, indicating the presence of a URI query string. If one
is found, remove the query string from viewldToTest, including the leading “?” and let it be queryString, look for
the string “f aces-r edi r ect =t r ue” within the query string. If found, let isRedirect be t r ue, otherwise let
isRedirect be f al se. Look for the string “i ncl udeVi ewPar ans=t r ue”. If found, let includeViewParams be
t r ue, otherwise let includeViewParams be f al se. When performing preemptive navigation, redirect is implied,
even if the navigation case doesn't indicate it, and the query string must be preserved. Refer to Section 4.1.9
“UlOutcomeTarget” for more information on preemptive navigation.

» If viewldToTest does not have a “file extension”, take the file extension from the current vi ew d and append it
properly to viewldToTest.

« If viewldToTest does not begin with “/”, take the current vi ew d and look for the last *“/ ”. If not found, prepend
a “/ 7 and continue. Otherwise remove all characters in vi ewl d after, but not including, “/ , then append
viewldToTest and let the result be viewldToTest.

» Obtain the current ViewHandler and call its der i veVi ewl d() method, passing the current FacesCont ext and
viewldToTest. If Unsuppor t edOper at i onExcept i on is thrown, which will be the case if the Vi ewHandl er
is a Pre JSF 2.0 Vi ewHand| er, the implementation must ensure the algorithm described for
Vi ewHandl er . deri veVi ew d() specified in Section 7.5.2 “Default ViewHandl er
I mpl enent ati on” is performed. Let the result be implicitViewld.

« If the implicitViewld is non-nul | , take the following action. If isRedirect is t r ue, append the queryString to
implicitViewld. Let virtualNavigationCase be a conceptual <navi gat i on- case> element whose f r onVi ewl d
is the current vi ew d, f romAct i on is passed through from the arguments to handl eNavi gati on(),

f r onQut cone is passed through from the arguments to handl eNavi gati on(), toView d is
implicitViewld, and r edi r ect is the value of isRedirect, and i ncl ude- vi ew- par ans is includeViewParams.
Treat virtualNavigationCase as a matching navigation case and return to the first step above that starts with “If a
matching <navi gat i on- case> element was located...”.

= If none of the above steps found a matching <navi gat i on- case>, if Pr oj ect St age is not Pr oduct i on
render a message in the page that explains that there was no match for this outcome.

A rule match always causes a new view to be created, losing the state of the old view. This includes clearing out the view
map.

Query string parameters may be contributed by three different sources: the outcome (implicit navigation), a nested

<f : par am> on the component tag (e.g., <h: | i nk>, <h: but t on>, <h: conmandLi nk>, <h: conmandBut t on>),
and view parameters. When a redirect URL is built, whether it be by the Navi gat i onHandl er on a redirect case or a
Ul Qut conmeTar get renderer, the query string parameter sources should be consulted in the following order:

= the outcome (implicit navigation)

= Vview parameter

= nested <f: par anpr

If a query string parameter is found in two or more sources, the latter source must replace all instances of the query
string parameter from the previous source(s).

[P1-end]

| 7-12 JavaServer Faces Specification + June 2009

7.4.3

Example NavigationHandler Configuration

The following <navi gat i on- r ul e> elements might appear in one or more application configuration resources (see
Section 11.4 “Application Configuration Resources”) to configure the behavior of the default Navi gat i onHandl er

implementation:

<navi gation-rul e>

<descri ption>

APPLI CATI ON W DE NAVI GATI ON HANDLI NG
</ descri ption>
<fromviewid> * </fromviewid>

<navi gati on- case>
<descri ption>

Assune there is a “Logout” button on every page that

i nvokes the | ogout Action.
</ descri ption>

<di spl ay- name>Generi c Logout Button</di spl ay- name>

<from acti on>#{user Bean. | ogout}</from acti on>
<to-viewid>/logout.jsp</to-viewid>
</ navi gati on- case>

<navi gati on- case>
<descri ption>

Handl e a generic error outconme that mi ght be returned

by any application Action.
</ descri ption>

<di spl ay- name>Generi c Error Qutcone</di spl ay- name>

<from out cone>| ogi nRequi r ed</ f r om out cone>
<to-viewid>/ nust-login-first.jsp</to-viewid>
</ navi gati on- case>

<navi gati on- case>
<descri ption>
Illustrate paramaters
</ descri pti on>

<from out come>r edi r ect Passwor dSt r engt h</ f r om out cone>

<redirect>

<vi ew par anp<namne>user | d</ nane><val ue>soneVal ue</ val ue>

</ vi ew par an®

<i ncl ude- vi ew par ans>t r ue</ i ncl ude- vi ew par ans>

</redirect>
</ navi gati on- case>

</ navi gati on-rul e>

Chapter 7 Application Integration

7-13

<navi gati on-rul e>

<descri ption>
LOG N PAGE NAVI GATI ON HANDLI NG
</ descri ption>
<fromviewid> /login.jsp </fromviewid>

<navi gati on- case>
<descri ption>
Handl e case where | ogi n succeeded.
</ descri ption>
<di spl ay- name>Successful Logi n</di spl ay- nane>
<from acti on>#{user Bean. | ogi n} </ from acti on>
<f r om out cone>success</ f rom out cone>
<t 0-vi ewi d>/ hone. j sp</to-vi ewid>
</ navi gati on- case>

<navi gati on- case>
<descri ption>
User registration for a new user succeeded.
</ descri ption>

<di spl ay- name>Successful New User Regi stration</displ ay-name>

<fromaction>#{userBean. regi ster}</fromacti on>
<from out come>success</from out cone>
<t o-vi ewi d>/ wel cone. jsp</to-viewid>

</ navi gati on- case>

<navi gati on- case>
<descri ption>
User registration for a new user failed because of a
dupl i cate usernane.
</ descri pti on>
<di spl ay- name>Fai | ed New User Regi stration</displ ay-nane>
<fromaction>#{user Bean. regi ster}</fromacti on>
<from out come>dupl i cat eUser Nane</ f r om out conme>
<t o-vi ewi d>/try-anot her-nane.jsp</to-viewid>
</ navi gati on- case>

</ navi gati on-rul e>

| 7-14 JavaServer Faces Specification * June 2009

<navi gati on-rul e>

<descri ption>
Assune there is a search formon every page. These navigation
cases get nerged with the application-w de rul es above because
they use the sane “fromviewid” pattern. The sane thing woul d
al so happen if “fromviewid’ was omitted here, because that is
equi valent to a matching pattern of “*”.

</ descri ption>

<fromviewid>* </fromviewid>

<navi gati on- case>
<di spl ay- name>Sear ch Form Success</ di spl ay- nane>
<from acti on>#{sear chForm go}</from acti on>
<from out come>success</from out come>
<to-viewid>/search-results.jsp</to-viewid>

</ navi gati on- case>

<navi gati on- case>
<di spl ay- name>Sear ch Form Fai | ur e</ di spl ay- nane>
<from acti on>#{sear chForm go}</from acti on>
<t 0-vi ewi d>/ sear ch-probl em j sp</to-viewid>

</ navi gati on- case>

</ navi gati on-rul e>

<navi gati on-rul e>

<descri pti on>

Searching works slightly differently in part of the site
</ descri ption>
<fromviewid> /novies/* </fromviewid>

<navi gati on- case>
<di spl ay- name>Sear ch For m Success</ di spl ay- nane>
<from acti on>#{sear chForm go}</from acti on>
<from out come>success</from out cone>
<t o-vi ewi d>/ novi e-search-results.jsp</to-viewid>
</ navi gati on- case>

<navi gati on- case>
<di spl ay- name>Sear ch Form Fai | ur e</ di spl ay- nane>
<fromacti on>#{sear chForm go}</fromacti on>
<t 0-vi ewi d>/ sear ch-probl em j sp</to-viewid>

</ navi gati on- case>

</ navi gati on-rul e>

Chapter 7 Application Integration

7-15

public void savePi zza();

<navi gation-rul e>
<descri ption>
Pi zza toppi ng sel ection navigation handling
</ descri ption>
<fromvi ewid>/sel ect Toppi ngs. xhtm </ from vi ewi d>
<navi gati on- case>
<descri ption>
Case where pizza is saved but there is additional cost
</ descri ption>
<di spl ay- nanme>Pi zza saved w extras</di spl ay- name>
<fromacti on>#{pi zzaBui | der. savePi zza} </ from acti on>
<i f >#{pi zzaBui | der. addi ti onal Cost}</if>
<t 0-vi ew i d>/ approveExtras. xht m </t o-vi ewi d>
</ navi gati on- case>
<navi gati on- case>
<descri ption>
Case where pizza is saved and additional pizzas are needed
</ descri pti on>
<di spl ay- name>
Pi zza saved, additional pizzas needed
</ di spl ay- nane>
<fromacti on>#{pi zzaBui | der. savePi zza} </ from acti on>
<i f>#{not order.conplete}</if>
<to-viewid>/createPizza. xhtm </to-viewid>
</ navi gati on- case>
<navi gati on- case>
<descri ption>
Handl e case where pizza is saved and order is conplete
</ descri pti on>
<di spl ay- name>Pi zza conpl et e</ di spl ay- nane>
<fromacti on>#{pi zzaBui | der. savePi zza} </ from acti on>
<if>#{order.conplete}</if>
<to-viewid>/cart.xhtm </to-viewid>
</ navi gati on- case>
</ navi gati on-rul e>

| 7-16 JavaServer Faces Specification + June 2009

public String placeOder();

<navi gation-rul e>
<descri ption>
Cart navigation handling
</ descri ption>
<fromviewid>/cart.xhtm </fromviewid>
<navi gati on- case>
<descri ption>
Handl e case where account has one click delivery enabl ed
</ descri ption>
<di spl ay- name>Pl ace order w one-click delivery</displ ay-nane>
<fromacti on>#{pi zzaBui | der. pl aceOrder}</from acti on>
<i f >#{account . oneC i ckDel i very}</if>
<to-viewid>/confirmation.xhtm </to-viewid>
</ navi gati on- case>
<navi gati on- case>
<descri ption>
Handl e case where delivery information is required
</ descri pti on>
<di spl ay- name>
Pl ace order w o one-click delivery
</ di spl ay- nane>
<fromacti on>#{pi zzaBui | der. pl aceOrder}</from acti on>
<i f>#{not account.oned ickDelivery}</if>
<to-viewid>/delivery.xhtm </to-viewid>
</ navi gati on- case>
</ navi gati on-rul e>

7.5

7.5.1

ViewHandler

Vi ewHandl er is the pluggability mechanism for allowing implementations of or applications using the JavaServer
Faces specification to provide their own handling of the activities in the Render Response and Restore View phases of the
request processing lifecycle. This allows for implementations to support different response generation technologies, as
well as different state saving/restoring approaches.

A JSF implementation must provide a default implementation of the Vi ewHand| er interface. See Section 7.1.7
“ViewHandler Property” for information on replacing this default implementation with another implementation.

Overview

ViewHandler defines the public APIs described in the following paragraphs

public Local e cal cul ateLocal e(FacesCont ext context);
public String cal cul at eRenderKi t | d(FacesCont ext cont ext);

Chapter 7 Application Integration ~ 7-17

These methods are called from cr eat eVi ew() to allow the new view to determine the Local e to be used for all
subsequent requests, and to find out which r ender Ki t I d should be used for rendering the view.

public void initView FacesContext) throws FacesException;
public String cal cul at eChar act er Encodi ng(FacesCont ext context);

The i ni t Vi ew() method must be called as the first method in the implementation of the Restore View Phase of the
request processing lifecycle, immediately after checking for the existence of the FacesCont ext parameter. See the
javadocs for this method for the specification..

public String deriveVi ew d(FacesContext context, String input);

The deri veVi ewl d() method is an encapsulation of the viewld derivation algorithm in previous versions of the
specification. This method looks at the argument i nput , and the current request and derives the vi ewl d upon which
the lifecycle will be run.

public U Vi ewRoot createVi ew(FacesCont ext context, String view d);

Create and return a new Ul Vi ewRoot instance, initialized with information from the specified FacesCont ext and
view identifier parameters.

If the view being requested is a Facelet view, the cr eat eVi ew() method must ensure that the Ul Vi ewRoot is fully
populated with all the children defined in the VDL page before cr eat eVi ew() returns.

public String getActi onURL(FacesContext context, String viewd);

Returns a URL, suitable for encoding and rendering, that (if activated) will cause the JSF request processing lifecycle for
the specified vi ewl d to be executed

public String getBooknarkabl eURL(FacesCont ext context, String
view d, Map<String, Li st<String>> paraneters, bool ean
i ncl udeVi ewPar ans) ;

Return a JSF action URL derived from the viewld argument that is suitable to be used as the target of a link in a JSF
response. The URL, if activated, would cause the browser to issue an initial request to the specified viewld

public String get Redi rect URL(FacesCont ext context, String viewd,
Map<String, List<String>> paraneters, bool ean incl udeVi ewPar ans);

Return a JSF action URL derived from the vi ew d argument that is suitable to be used by the Navi gat i onHandl er
to issue a redirect request to the URL using an initial request.

public String getResourceURL(FacesContext context, String path);

| 7-18 JavaServer Faces Specification + June 2009

7.5.2

Returns a URL, suitable for encoding and rendering, that (if activated) will retrieve the specified web application
resource.

public void renderVi ew(FacesCont ext context, U Vi ewRoot
vi ewToRender) throws | CException, FacesException;

This method must be called during the Render Response phase of the request processing lifecycle. It must provide a valid
ResponseW it er or ResponseSt r eaminstance, storing it in the FacesCont ext instance for the current request
(see Section 6.1.8 “ResponseStream and ResponseWriter”), and then perform whatever actions are required to cause the
view currently stored in the vi ewRoot of the FacesCont ext instance for the current request to be rendered to the
corresponding writer or stream. It must also interact with the associated St at eManager (see Section 7.7
“StateManager”), by calling the get Seri al i zedVi ewm) and saveVi ew() methods, to ensure that state information
for current view is saved between requests.

public U Vi emRoot restoreVi em FacesContext context, String view d)
throws | OExcepti on;

This method must be called from the Rest or e Vi ew phase of the request processing lifecycle. It must perform
whatever actions are required to restore the view associated with the specified FacesCont ext and vi ew d.

It is the caller’s responsibility to ensure that the returned Ul Vi ewRoot instance is stored in the FacesCont ext as the
new Vi ewRoot property. In addition, if r est or eVi ew() returns nul | (because there is no saved state for this view
identifier), the caller must call cr eat eVi ew(), and call r ender Response() on the FacesCont ext instance for
this request.

public void witeState(FacesContext context) throws | CException;

Take any appropriate action to either immediately write out the current view’s state information (by calling

St at eManager . wri t eSt at e()), or noting where state information may later be written. This method must be
called once per call to the encodeEnd() method of any renderer for a Ul For mcomponent, in order to provide the
Vi ewHandl er an opportunity to cause saved state to be included with each submitted form.

public Vi ewDecl ar ati onLanguage get Vi ewDecl ar ati onLanguage() ;

See the javadocs for this method for the specification.

Default ViewHandler Implementation

The terms view identifier and Vi eW d are used interchangeably below and mean the context relative path to the web
application resource that produces the view, such as a JSP page or a Facelets page. In the JSP case, this is a context
relative path to the jsp page representing the view, such as / f 00. j sp. In the Facelets case, this is a context relative path
to the XHTML page representing the view, such as / f 00. xht i .

JSF implementations must provide a default Vi ewHand| er implementation, along with a default

Vi ewDecl ar at i onLanguageFact or y implementation that vends Vi ewDecl ar ati onLanguage
implementations designed to support the rendering of JSP pages containing JSF components and Facelets pages
containing JSF components. The default Vi ewHandl| er is specified in this section and the default

Vi ewDecl ar at i onLanguage implementations are specified in the following section.

[P1-start ViewHandler.deriveViewld() requirements] The deri veVi ew d() method must fulfill the following
responsibilities:

Chapter 7 Application Integration ~ 7-19

If the argument input is nul | , return nul | .

If prefix mapping (such as “/faces/*”) is used for FacesSer vl et , normalize the vi ew d according to the following
algorithm, or its semantic equivalent, and return it.

» Remove any number of occurrences of the prefix mapping from the viewld. For example, if the incoming value
was / f aces/ faces/ faces/ vi ew. xht m the result would be simply vi ew. xht i .

If suffix mapping (such as “*.faces”) is used for FacesSer vl et , the vi ew d is set using following algorithm.
Let requestViewld be the value of argument i nput .

Consult the javadocs for Vi ewHandl er . FACELETS VI EW MAPPI NGS_PARAM NAME and perform the steps
necessary to obtain a value for that param (or its alias as in the javadocs). Let this be faceletsViewMappings.

Obtain the value of the context initialization parameter named by the symbolic constant

Vi ewHand! er . DEFAULT_SUFFI X_PARAM NAME (if no such context initialization parameter is present, use the
value of the symbolic constant Vi ewHand| er . DEFAULT_SUFFI X). Let this be jspDefaultSuffixes. For each entry
in the list from jspDefaultSuffixes, replace the suffix of requestViewld with the current entry from jspDefaultSuffixes.
For discussion, call this candidateViewld. For each entry in faceletsViewMappings, If the current entry is a prefix
mapping entry, skip it and continue to the next entry. If candidateViewld is exactly equal to the current entry, consider
the algorithm complete with the result being candidateViewld. If the current entry is a wild-card extension mapping,
apply it non-destructively to candidateViewld and look for a physical resource with that name. If present, consider the
algorithm complete with the result being the name of the physical resource. Otherwise look for a physical resource
with the name candidateViewld. If such a resource exists, consider the algorithm complete with the result being
candidateViewld. If there are no entries in faceletsViewMappings, look for a physical resource with the name
candidateViewld. If such a resource exists, candidateViewld is the correct vi ew d.

Otherwise, obtain the value of the context initialization parameter named by the symbolic constant

Vi ewHandl er . FACELETS_SUFFI X_PARAM NAME. (if no such context initialization parameter is present, use the
value of the symbolic constant Vi ewHand| er . DEFAULT_FACELETS_SUFFI X). Let this be faceletsDefaultSuffix.
Replace the suffix of requestViewld with faceletsDefaultSuffix. For discussion, call this candidateViewld. If a physical
resource exists with that name, candidateViewld is the correct vi ewl d.

Otherwise, if a physical resource exists with the name requestViewld let that value be vi ew d.

Otherwise return nul | .[P1-end]

[P1-start ViewHandler.calculateCharacterEncoding() requirements] The cal cul at eChar act er Encodi ng() method
must fulfill the following responsibilities:

Examine the Cont ent - Type request header. If it has a char set parameter extract it and return it.

If not, test for the existence of a session by calling get Sessi on(f al se) on the Ext er nal Cont ext for this
FacesCont ext . If the session is non-nul | , look in the Map returned by the get Sessi onMap() method of the
Ext er nal Cont ext for a value under the key given by the value of the symbolic constant

javax. faces. application. Vi ewHandl er . CHARACTER_ENCODI NG_KEY. If a value is found, convert it to
a String and return it. [P1-end]

[P1-start calculateLocale() requirements] The cal cul at eLocal e() method must fulfill the following responsibilities:

Attempt to match one of the locales returned by the get Local es() method of the Ext er nal Cont ext instance
for this request, against the supported locales for this application as defined in the application configuration resources.
Matching is performed by the algorithm described in Section JSTL.8.3.2 of the JSTL Specification. If a match is
found, return the corresponding Local e object.

Otherwise, if the application has specified a default locale in the application configuration resources, return the
corresponding Local e object.

Otherwise, return the value returned by calling Local e. get Def aul t () .[P1-end]

[P1-start calculateRenderKitld() requirements] The cal cul at eRender Ki t | d() method must fulfill the following
responsibilities:

Return the value of the request parameter named by the symbolic constant
ResponseSt at eManager . RENDER _KI T_I D_PARAM if it is not nul | .

Otherwise, return the value returned by Appl i cat i on. get Def aul t Render Ki t I d() ifitis not nul I .

| 7-20 JavaServer Faces Specification + June 2009

Otherwise, return the value specified by the symbolic constant
Render Ki t Fact ory. HTM__BASI C_RENDER KI T.

[P1-start createView() requirements] The cr eat eVi ew() method must obtain a reference to the
Vi ewDecl ar at i onLanguage for this vi ew d and call its Vi ewDecl ar at i onLanguage. cr eat eVi ew()
method, returning the result and not swallowing any exceptions thrown by that method.[P1-end]

[P1-start getActionURL() requirements] The get Act i onURL() method must fulfill the following responsibilities:

If the specified vi ewl d does not start with a “/”, throw | | | egal Ar gurrent Excepti on.

If prefix mapping (such as “/faces/*”) is used for FacesSer vl et , prepend the context path of the current
application, and the specified prefix, to the specified viewld and return the completed value. For example
“/ car deno/ f aces/ chooselLocal e. j sp”.

If suffix mapping (such as “*.faces”) is used for FacesSer vl et , the following algorithm must be followed to
derive the result.

If the argument vi ew d has no extension, the result is cont ext Path + view d + mappi ng, where
cont ext Pat h is the context path of the current application, vi ew d is the argument vi ewl d and mappi ng is the
value of the mapping (such as “*.faces”).

If the argument vi ew d has an extension, and this extension is not mappi ng, the result is cont ext Pat h +
vi ewl d. substring(0, period) + mapping.

If the argument vi ewW d has an extension, and this extension is mappi ng, the result is cont ext Path + vi ewl d.

For example “/ car deno/ chooselLocal e. f aces”[Pl-end]

[P1-start getBookmarkableURL() requirements] The get Bookmar kabl eURL() method must fulfill the following
responsibilities:

If argument i ncl udeVi ewPar ans is t r ue, obtain the view paramaters corresponding to the argument vi ewl d
and append them to the Map given in argument par anmet er s. Let the resultant Map be called paramsToEncode.

« If the vi ewl d of the current FacesCont ext is not equal to the argument vi ew d, get the
Vi ewDecl ar at i onLanguage for the argument vi e d, obtain its Vi ewvet adat a, call
creat eMet adat aVi ew() on it, then call Vi ewvet adat a. get Vi ewPar anet er s() passing the return from
creat eMet adat aVi ew() . Let the result of this method be toViewParams.

« If the vi ewl d of the current FacesCont ext is equal to the argument vi ew d, call
Vi ewiVet adat a. get Vi ewPar anet er s() passing the current Ul Vi ewRoot . Let the result of this method be
toViewParams.

« If toViewParams is empty, take no further action to add view parameters to this URL. Iterate over each
Ul Vi ewPar anet er element in foViewParams and take the following actions on each element.

« Ifthe Map given by par amet er s has a key equal to the name property of the current element, take no action on
the current element and continue iterating.

« If the current Ul Vi ewPar anet er has a Val ueExpr essi on under the key “ val ue” (without the quotes), let
value be the result of calling get St ri ngVal ueFr onivbdel () on the current Ul Vi ewPar anet er.

« Otherwise, if the current vi ew d is the same as the argument Vi ew d, let value be the result of calling
get Stri ngVal ue() on the current Ul Vi ewPar anet er.

» Otherwise, if the current Vi ewl d is different from the argument vi ewl d, locate the Ul Vi ewPar anet er
instance in the current view whose name is equivalent to the current element and let value be the result of calling
get StringVal ue() on the located Ul Vi ewPar anet er.

« If the above steps yielded a non-nul | value, find the Li st <St ri ng> value in the par anet er s map under the
key given by the name property of the current Ul Vi ewPar amet er element. If such a Li st exists, add value to
it. Otherwise create a Li st <St ri ng>, add value to it, and add it to the par anet er s map under the appropriate
key.

If argument i ncl udeVi ewPar ans is f al se, take no action to add additional entries to par amat er s. Let
paramsToEncode be par anet er s.

Call get Acti onURL() on the argument vi ew d. Let the result be actionEncodedViewld.

Chapter 7 Application Integration ~ 7-21

= Call encodeBooknmar kabl eURL() on the current Ext er nal Cont ext , passing actionEncodedViewld as the first
argument and paramsToEncode as the second. Let the result be bookmarkEncodedURL.

» Pass bookmarkEncodedURL to Ext er nal Cont ext . encodeAct i onURL() and return the result.[P1-end]

[P1-start getRedirectURL() requirements] The get Redi r ect URL() method must fulfill the following responsibilities:

= Take exactly the same action as in get Bookmar kabl eURL() up to and including the call to get Acti onURL() .
Thereafter take the following actions.

= Call encodeRedi rect URL() on the current Ext er nal Cont ext, passing actionEncodedViewld as the first
argument and paramsToEncode as the second. Let the result be redirectEncoded URL.

» Pass redirectEncodedURL to Ext er nal Cont ext . encodeActi onURL() and return the result.[P1-end]

[P1-start getResourceURL() requirements] The get Resour ceURL() method must fulfill the following responsibilities:

= [f the specified path starts with a “/”, prefix it with the context path for the current web application, and return the
result.

= Otherwise, return the specified pat h value unchanged.[P1-end]

[P1-start initView() requirements] The i ni t Vi ew() method must fulfill the following responsibilities:

= See the javadocs for this method for the specification.[P1-end]

[P1-start renderView() requirements] The r ender Vi ew() method must obtain a reference to the

Vi ewDecl ar at i onLanguage for the vi ew d of the argument vi ewToRender and call its

Vi ewDecl ar ati onLanguage. cr eat eVi ew() method, returning the result and not swallowing any exceptions
thrown by that method.[P1-end]

[P1-start restoreView() requirements]The r est or eVi ew() method must obtain a reference to the

Vi ewDecl ar at i onLanguage for the vi ew d of the argument vi ewToRender and call its

Vi ewDecl ar ati onLanguage. cr eat eVi ew() method, returning the result and not swallowing any exceptions
thrown by that method.[P1-end]

The witeState() method must fulfill the following responsibilities:
= Obtain the saved state stored in a thread-safe manner during the invocation of r ender Vi ew() and pass it to the
writeState() method of the St at eManager for this application. [N/T-end]

In applications whose views are not written in JSP or Facelets, these responsibilities must be performed by a custom
Vi ewHandl er and/or Vi ewDecl ar at i onLanguage implementation.

7.6

7.6.1

ViewDeclarationLanguage

To support the introduction of Facelets into the core specification, whilst preserving backwards compatibility with
existing JSP applications, the concept of the View Declaration Language was formally introduced in version 2 of the
specification. A View Declaration Language (VDL) is a syntax used to declare user interfaces comprised of instances of
JSF Ul Conponent s. Under this definition, both JSP and Facelets are examples of an implementation of a VDL. Any of
the responsibilities of the Vi ewHandl er that specifically deal with the VDL sub-system are now the domain of the
VDL implementation. These responsibilities are defined on the Vi ewDecl ar at i onLanguage class.

ViewDeclarationLanguageFactory

Vi ewDecl ar ati onLanguageFact ory is a factory object that creates (if needed) and returns a new
Vi ewDecl ar at i onLanguage instance based on the VDL found in a specific view.

| 7-22 JavaServer Faces Specification + June 2009

7.6.2

7.6.2.1

The factory mechanism specified in Section 11.2.6.1 “FactoryFinder” and the decoration mechanism specified in
Section 11.4.6 “Delegating Implementation Support” are used to allow decoration or replacement of the
Vi ewDecl ar at i onLanguageFact ory.

publi c Vi ewDecl ar ati onLanguage get Vi ewDecl ar ati onLanguage(Stri ng
vi ew d)

Return the Vi ewDecl ar at i onLanguage instance suitable for handling the VDL contained in the page referenced by
the argument viewld. [P1-start required ViewDeclarationLanguagelmpls]The default implementation must return a valid
Vi ewDecl ar at i onLanguage instance for views written in either JSP or Facelets. [P1-

end_required ViewDeclarationLanguagelmpls]Whether the instance returned is the same for a JSP or a Facelet view is
an implementation detail.

Default ViewDeclarationLanguage Implementation

For each of the methods on Vi ewDecl ar at i onLanguage, the required behavior is broken into three segments:
= Behavior required of all compliant implementations
= Behavior required of the implementation that handles Facelet pages

= Behavior required of the implementation that handles JSP pages

Any implementation strategy is valid as long as these requirements are met.

ViewDeclarationLanguage.create View()

public U Vi ewRoot createView FacesContext context, String view d)

[P1-start createView() requirements] The cr eat eVi ew() method must fulfill the following responsibilities.
All implementations must:

« If there is an existing Ul Vi ewRoot available on the FacesCont ext , this method must copy its | ocal e and
render Ki t | d to this new view root. If not, this method must call cal cul at eLocal e() and
cal cul at eRender Ki t 1 d(), and store the results as the values of the | ocal e and r ender Ki t | d, proeprties,
respectively, of the newly created Ul Vi ewRoot .

« Ifnovi ew d could be identified, or the vi ew d is exactly equal to the servlet mapping, send the response error
code SC_NOT_FOUND with a suitable message to the client.

« Create a new Ul Vi ewRoot object instance using
Appl i cation. creat eConponent (Ul Vi ewRoot . COMPONENT_TYPE) .

» Pass the argument vi ew d to the set Vi ewl d() method on the new Ul Vi ewRoot instance.

» The new Ul Vi ewRoot instance must be passed to FacesCont ext . set Vi ewRoot () . This enables the
broadest possible range of implementations for how tree creation is actually implemented.

The JSP and Facelet implementation is not required to take any additional action.
All implementations must:

« Return the newly created Ul Vi ewRoot .

[P1-end]

Chapter 7 Application Integration ~ 7-23

7.6.2.2 ViewDeclarationLanguage.buildView()

public void buil dVi e FacesCont ext context, U Conponent root)

[P1-start buildView() requirements] The bui | dVi ew() method must fulfill the following responsibilities.

All implementations must:

» The implementation must guarantee that the page is executed in such a way that the Ul Conponent tree described
in the VDL page is completely built and populated, rooted at the new Ul Vi ewRoot instance created previously.

» The runtime must guarantee that the view must be fully populated before the af t er Phase() method of any
Phaseli st ener s attached to the application or to the Ul Vi ewRoot (via
Ul Vi ewRoot . set Af t er PhaseLi st ener () or U Vi ewRoot . addPhaseLi st ener ()) are called.

The Facelets implementation must guarantee the markup comprising the view is executed with the UIComponent
instances in the view being encountered in the same depth-first order as in other lifecycle methods defined on
Ul Conponent, and added to the view (but not rendered at this time), during the traversal. .

[P1-end]

7.6.2.3 ViewDeclarationLanguage.getComponentMetadata()

publ i ¢ Beanl nfo get Conponent Met adat a(FacesCont ext cont ext,
Resour ce conponent Resour ce)

[P1-start getComponentMetaData() requirements] The get Conponent Met adat a() method must fulfill the
following responsibilities:

All implementations must:

« Return a reference to the component metadata for the composite component represented by the argument
conponent Resour ce, or nul | if the metadata cannot be found. The implementation may share and pool what
it ends up returning from this method to improve performance.

The Facelets implementation must

« Support argument conponent Resour ce being a Facelet markup file that is to be interpreted as a composite
component as specified in Section 3.6.2.1 “Composite Component Metadata”.

The JSP implementation is not required to support argument conponent Resour ce being a JSP markup file. In this
case, nul I must be returned from this method.[P1-end]

7.6.2.4 ViewDeclarationLanguage.getViewMetadata() and getViewParameters()

public Vi ewiet adat a get Vi ewet adat a(FacesCont ext context, String
vi ew d)

[P1-start getViewtMetaData() requirements] The get Vi ewet adat a() method must fulfill the following
responsibilities:

All implementations must:

= Return a reference to the view metadata for the view represented by the argument vi ewl d, or nul | if the
metadata cannot be found. The implementation may share and pool what it ends up returning from this method to
improve performance.

| 7-24 JavaServer Faces Specification * June 2009

7.6.2.5

7.6.2.6

The Facelets implementation must support argument Vi ew d being a Facelet markup file from which the view
metadata should be extracted.

The JSP implementation is not required to support argument Vi ew d being a JSP markup file. In this case, nul |
must be returned from this method.[P1-end]

ViewMetadata Contract

public U Vi ewRoot createMetadataVi ew()

The content of the metadata is provided by the page author as a special <f : f acet / > of the Ul Vi ewRoot . The
name of this facet is given by the value of the symbolic constant Ul Vi ewRoot . METADATA FACET_NAME. The
Ul Vi ewRoot return from this method must have that facet, and its children as its only children. This facet may
contain <f : vi ewPar amet er > children. Each such element is the metadata will cause a Ul Vi ewPar anet er to be
added to the view. Because Ul Vi ewPar anet er extends Ul | nput it is valid to attach any of the kinds of attached
objects to an <f : vi ewPar anet er > that are valid for any element that represents any other kind of Ul | nput in the
view.

]

public Col |l ection<U Vi ewPar anet er > get Vi ewPar arret er s(Ul Vi ewRoot)

Convenience method that uses the view metadata specification above to obtain the Li st <Ul Vi ewPar amet er > for the
argument viewld.

ViewDeclarationLanguage.getScriptComponentResource()

publ i ¢ Resource get Scri pt Conponent Resour ce(FacesCont ext context,
Resour ce conponent Resour ce)

[P1-start getScriptComponentResource() requirements] The get Scri pt Conponent Resour ce() method must
fulfill the following responsibilities:

The Facelets implementation must:

« Take implementation specific action to discover a Resour ce given the argument conponent Resour ce. The
returned Resour ce if non-nul | , must point to a script file that can be turned into something that extends
Ul Conponent and implements Nani ngCont ai ner.

The JSP implementation is not required to support this method. In this case, nul | must be returned from this
method.[P1-end]

ViewDeclarationLanguage.renderView()

public void renderVi ew(FacesCont ext context, String view d)

[P1-start renderView() requirements] The r ender Vi ew() method must fulfill the following responsibilities:

All implementations must:

» Return immediately if calling i SRender ed() on the argument Ul Vi ewRoot returns t r ue.

Chapter 7 Application Integration ~ 7-25

7.6.2.7

The JSP implementation must:

« If the current request is a Ser vl et Request , call the set () method of the
javax.servlet.jsp.jstl.core. Confi g class, passing the current Ser vl et Request , the symbolic
constant Conf i g. FMI_LOCALE, and the | ocal e property of the specfied Ul Vi ewRoot . This configures JSTL
with the application’s preferred locale for rendering this response.

» Update the JSTL locale attribute in request scope so that JSTL picks up the new locale from the Ul Vi ewRoot .
This attribute must be updated before the JISTL set Bundl e tag is called because that is when the new
Local i zat i onCont ext object is created based on the locale.

« Create a wrapper around the current response from the Ext er nal Cont ext and set it as the new response in the
Ext er nal Cont ext . Otherwise, omit this step. This wrapper must buffer all content written to the response so
that it is ready for output at a later point. This is necessary to allow any content appearing after the <f : vi ew> tag
to appear in the proper position in the page.

» Execute the JSP page to build the view by treating the vi ewl d as a context-relative path (starting with a slash
character), by passing it to the di spat ch() method of the Ext er nal Cont ext associated with this request.
Otherwise, continue to the next step. This causes control to pass to the JSP container, and then to
Ul Conponent C assi cTagBase. Please consult the javadocs for that class for the specification of how to
handle building the view by executing the JSP page.

» Store the wrapped response in a thread-safe manner for use below. Otherwise, omit this step. The default
implementation uses the request scope for this purpose.

= Restore the original response into the Ext er nal Cont ext .

« If the FacesCont ext has a non-nul | ResponseW it er create a new writer using its
cl oneWt hWi t er () method, passing the response’s Wi t er as the argument. Otherwise, use the current
Render Ki t to create a new ResponseWiter.

« Set the new ResponseW it er into the FacesCont ext, saving the old one aside.
All implementations must:

« Call saveVi ew() on the St at eManager for this application, saving the result in a thread-safe manner for use
in the witeStat e() method of Vi ewHandl er.

« Call start Docunent () on the ResponseWiter.
The Facelets implementation must:

« Call encodeAl | () on the Ul Vi ewRoot .

The JSP implementation must:

= Output any content in the wrapped response from above to the response, removing the wrapped response from the
thread-safe storage.

All implementations must:

» Call endDocunent () on the ResponseWiter.

The JSP implementation must:

« If the old ResponseW i ter wasnotnull, place the old ResponseW it er back into the FacesCont ext .
The Facelets implementation must

« Close the writer used to write the response.[P1-end]

ViewDeclarationLanguage.restoreView()

public U Vi ewRoot restoreVi ew(FacesContext context, String view d)

[P1-start restoreView() requirements]The r est or eVi ew() method must fulfill the following responsibilities:

All implementations must:

| 7-26 JavaServer Faces Specification + June 2009

« Ifno vi ew d could be identified, return nul | .

« Call the r est or eVi ew() method of the associated St at eManager, passing the FacesCont ext instance for
the current request and the calculated vi ewl d, and return the returned Ul Vi ewRoot , which may be nul | .[P1-
end]

7.7

7.7.1

7.7.2

StateManager

St at eManager directs the process of saving and restoring the view between requests. The St at eManager instance
for an application is retrieved from the Appl i cat i on instance, and therefore cannot know any details of the markup
language created by the Render Ki t being used to render a view. Therefore, the St at eManager utilizes a helper
object (see Section 8.4 “ResponseStateManager”), that is provided by the Render Ki t implementation, and is therefore
aware of the markup language details. The JSF implementation must provide a default St at eManager implementation
that supports the behavior described below.

Overview

Conceptually, the state of a view can be divided into two pieces:
n Tree Structure. This includes component parent-child relationships, including facets.
» Component State. This includes:

» Component attributes and properties, and

« Validators, Converters, FacesLi st ener s, and other objects attached to a component. The manner in
which these attached objects are saved is up to the component implementation. For attached objects that may have
state, the St at eHol der interface (see Section 3.2.4 “StateHolder”) is provided to allow these objects to preserve
their own attributes and properties. If an attached object does not implement St at eHol der, but does implement
Seri al i zabl e, it is saved using standard serialization. Attached objects that do not implement either
St at eHol der or Seri al i zabl e must have a public, zero-arg constructor, and will be restored only to their
initial, default object state®.

It is beneficial to think of this separation between tree structure and tree state to allow the possibility that
implementations can use a different mechanism for persisting the structure than is used to persist the state. For
example, in a system where the tree structure is stored statically, as an XML file, for example, the system could keep
a DOM representation of the trees representing the webapp Ul in memory, to be used by all requests to the
application.

State Saving Alternatives and Implications

JSF implementations support two primary mechanisms for saving state, based on the value of the

j avax. f aces. STATE_SAVI NG_METHOD initialization parameter (see Section 11.1.3 “Application Configuration
Parameters”). The possible values for this parameter give a general indication of the approach to be used, while allowing
JSF implementations to innovate on the technical details:

= client -- Cause the saved state to be included in the rendered markup that is sent to the client (such as in a hidden
input field for HTML). The state information must be included in the subsequent request, making it possible for JSF
to restore the view without having saved information on the server side. It is advisable that this information be
encrypted and tamper evident, since it is being sent down to the client, where it may persist for some time.

6. The implementation classes for attached object must include a public zero-arguments constructor.

Chapter 7 Application Integration ~ 7-27

7.7.3

7.7.4

= server -- Cause the saved state to be stored on the server in between requests. Implementations that wish to enable
their saved state to fail over to a different container instance must keep this in mind when implementing their server
side state saving strategy. The default implementation Serializes the view in both the client and server modes. In the
server mode, this serialized view is stored in the session and a unique key to retrieve the view is sent down to the
client. By storing the serialized view in the session, failover may happen using the usual mechanisms provided by the
container.

The values of all component attributes and properties (as well as the saved state of attached objects) must implement
java.io. Serializable.

State Saving Methods.

public Object saveVi ew FacesCont ext context);

[P1-start saveView() requirements| This method causes the tree structure and component state of the view contained in
the argument FacesCont ext to be collected, stored, and returned in a j ava. | ang. Cbj ect instance that must
implement j ava. i 0. Seri al i zabl e. If nul | is returned from this method, there is no state to save.[P1-end]

The returned object must represent the entire state of the view, such that a request processing lifecycle can be run against
it on postback. Special care must be taken to guarantee that objects attached to component instances, such as listeners,
converters, and validators, are also saved. The St at eHol der interface is provided for this reason.

This method must also enforce the rule that component ids within a Nami ngCont ai ner must be unique

public void witeState(FacesContext context, Chject state) throws
| OExcepti on;

Save the state represented in the specified Obj ect instance, in an implementation dependent manner.

State Restoring Methods

public U Vi ewRoot restoreView FacesContext context, String
view d) ;

Restore the tree structure and the component state of the view for this vi ewl d to be restored, in an implementation
dependent manner. If there is no saved state information available for this vi ew d, this method returns nul | .

The default implementation of this method calls through to r est or eTr eeSt r uct ur e() and, if necessary
rest or eConponent St at e() .

| 7-28 JavaServer Faces Specification + June 2009

7.7.5

Convenience Methods

publi ¢ bool ean i sSavi ngSt at el nCl i ent (FacesCont ext context);

[P1-start isSavingStateInClient() requirements] Return t r ue if and only if the value of the Ser vl et Cont ext init
parameter named by the value of the constant St at eManager . STATE_SAVI NG_METHOD _PARAM NAME is equal to
the value of the constant STATE _SAVI NG_METHCOD CLI ENT. Return f al se otherwise. [P1-end]

public String getViewState(FacesContext context);

Return the current view state as a String. [Pl-start-getViewState] This method must call
ResposeSt at eManger . get Vi ewSt at e. [P1-end] Refer to Section 8.4 “ResponseStateManager” for more details.

7.8

ResourceHandler

The normative specification for this class is in the javadoc for j avax. f aces. appl i cati on. Resour ceHandl er.
See also Section 2.6 “Resource Handling”.

publ i ¢ ResourceHandl er get ResourceHandl er();

public void set ResourceHandl er (Resour ceHandl er inpl);

7.9

7.9.1

Deprecated APIs

PropertyResolver Property

public PropertyResol ver getPropertyResol ver();
[depr ecat ed]

public void setPropertyResol ver (PropertyResol ver resol ver);
[depr ecat ed]

[N/T-start getPropertyResolver() requirements] get Pr opert yResol ver () must return a Pr opert yResol ver
instance that wraps the ELResol ver instance that Faces provides to the unified EL. [N/T-end] The

Pr opert yResol ver instance will be utilized to evaluate each . or [] operator when processing value expressions. This
method has been deprecated for get ELResol ver () (see Section 7.1.5 “ELResol ver Property”).

set Proper t yResol ver () replaces the Propert yResol ver instance that will be utilized to evaluate each . or []
operator when processing a value binding expression. A default implementation must be provided, which operates as
described in Section 5.8.2 “PropertyResolver and the Default PropertyResolver”. This method has been deprecated. See
the Javadocs for set Pr opert yResol ver ().

Chapter 7 Application Integration ~ 7-29

7.9.2

7.9.3

7.9.4

VariableResolver Property

publi c Variabl eResol ver get Vari abl eResol ver();
[depr ecat ed]

public void setVariabl eResol ver (Vari abl eResol ver resol ver);
[depr ecat ed]

[N/T-start getVariableResolver() requirements] get Var i abl eResol ver () must return the Var i abl eResol ver that
wraps the ELResol ver instance that Faces provides to the unified EL. The Var i abl eResol ver instance will be
utilized to convert the first name in a value expression into a corresponding object. The implementation must pass nul |
as the base argument for any methods invoked on the underlying ELResol ver. This method has been deprecated for
get ELResol ver (). [N/T-end]

set Vari abl eResol ver replaces the Var i abl eResol ver instance that will be utilized to resolve method and value
bindings. A default implementation must be provided, which operates as described in Section 5.8.1 “VariableResolver
and the Default VariableResolver”. The method has been deprecated. See the Javadocs for set Vari abl eResol ver ().

Acquiring ValueBinding Instances

publi ¢ Val ueBi ndi ng createVal ueBi nding(String ref);
[depr ecat ed]

Create and return a Val ueBi ndi ng that can be used to evaluate the specified value binding expression. Call through to
creat eVal ueExpr essi on, passing the argument r ef , Obj ect . cl ass for the expectedType, and nul | for the

f nMapper. To avoid nondeterministic behavior, it is recommended that applications (or frameworks) wishing to plug
in their own resolver implementations do so before cr eat eVal ueBi ndi ng() is called for the first time. This method
has been deprecated for cr eat eVal ueExpr essi on() (Section 7.1.10 “Programmatically Evaluating Expressions”

Acquiring MethodBinding Instances

publi ¢ Met hodBi ndi ng creat eMet hodBi ndi ng(String ref, d ass
parans[]);
[depr ecat ed]

Create and return a Met hodBi ndi ng that can be used to evaluate the specified method binding expression, and invoke
the specified method. The implementation must call through to cr eat eMet hodExpr essi on, passing the given
arguments, and wrap the result in a Met hodBi ndi ng implementation, returning it. The method that is invoked must
have parameter signatures that are compatible with the classes in the par ans parameter’ (which may be nul | or a
zero-length array if the method to be called takes no parameters). The actual parameters to be passed when the method
is executed are specified on the i nvoke() call of the returned Met hodBi ndi ng instance.

To avoid nondeterministic behavior, it is recommended that applications (or frameworks) wishing to plug in their own
resolver implementations do so before calling cr eat eMet hodBi ndi ng() for the first time. This method has been
deprecated.

7. The actual Met hod selected for execution must be selected as if by calling Class.getMethod() and passing the method name and the parameters signature
specified in the createMethodBinding() call.

| 7-30 JavaServer Faces Specification + June 2009

7.9.5

7.9.6

7.9.7

Object Factories

publ i ¢ U Conmponent creat eConponent (Val ueBi ndi ng conponent Bi ndi ng,
FacesCont ext context, String conponent Type);
[depr ecat ed]

Special version of the factory for UIComponent instances that is used when evaluating component binding expression
properties. The implementation of this method must wrap the argument conponent Bi ndi ng in an implementation of
Val ueExpr essi on and call through to cr eat eConponent (j avax. el . Val ueExpr essi on,

j avax. faces. FacesContext, java.lang.String). This method has been deprecated for

cr eat eConponent () using Val ueExpr essi on (see Section 7.1.11 “Object Factories™)

StateManager

This method causes the tree structure and component state of the view contained in the argument FacesCont ext to be
collected, stored, and returned in a St at eManager . Seri al i zedVi ew instance. If nul | is returned from this
method, there is no state to save.

This method must also enforce the rule that component ids within a Nami ngCont ai ner must be unique

public void witeState(FacesContext context,
St at eManager. Seri al i zedVi ew state) throws | OException;
[depr ecat ed]

Save the state represented in the specified Seri al i zedVi ew instance, in an implementation dependent manner.

protected Cbject getTreeStructureToSave(FacesCont ext context);
[depr ecat ed]

This method must create a Seri al i zabl e object that represents the tree structure of the component tree for this view.
Tree structure is comprised of parent-child relationships, including facets. The i d of each component and facet must also
be saved to allow the naming containers in the tree to be correctly restored when this view is restored.

protected Object get Conponent St at eToSave(FacesCont ext context);
[depr ecat ed]

This method must create a Seri al i zabl e object representing the component state (attributes, properties, and attached
objects) of the component tree for this view. Attached objects that wish to save and restore their own state must
implement St at eHol der.

ResponseStateManager

This method causes the tree structure and component state of the view contained in the argument FacesCont ext to be
collected, stored, and returned in a St at eManager . Seri al i zedVi ew instance. If nul | is returned from this
method, there is no state to save.

Chapter 7 Application Integration 7-31

This method must also enforce the rule that component ids within a Nami ngCont ai ner must be unique

public void witeState(FacesContext context,
St at eManager . Seri al i zedVi ew state) throws | OException;
[depr ecat ed]

Save the state represented in the specified Seri al i zedVi ew instance, in an implementation dependent manner.

protected Cbject getTreeStructureToRestore(FacesContext context,
String view d);
[depr ecat ed]

The implementation must inspect the current request and return the tree structure Object passed to it on a previous
invocation of wi teState() ..

prot ect ed Obj ect get Conponent St at eToRest or e(FacesCont ext cont ext,
String view d);
[depr ecat ed]

The implementation must inspect the current request and return the component state Object passed to it on a previous
invocation of witeState().

| 7-32 JavaServer Faces Specification + June 2009

Rendering Model

JavaServer Faces supports two programming models for decoding component values from incoming requests, and
encoding component values into outgoing responses - the direct implementation and delegated implementation models.
When the direct implementation model is utilized, components must decode and encode themselves. When the delegated
implementation programming model is utilized, these operations are delegated to a Render er instance associated (via
the r ender er Type property) with the component. This allows applications to deal with components in a manner that
is predominantly independent of how the component will appear to the user, while allowing a simple operation (selection
of a particular Render Ki t) to customize the decoding and encoding for a particular client device or localized
application user.

Component writers, application developers, tool providers, and JSF implementations will often provide one or more
Render Ki t implementations (along with a corresponding library of Render er instances). In many cases, these classes
will be provided along with the Ul Conponent classes for the components supported by the Render Ki t . Page authors
will generally deal with Render Ki t s indirectly, because they are only responsible for selecting a render kit identifier to
be associated with a particular page, and a r ender er Type property for each Ul Component that is used to select the
corresponding Render er.

8.1

RenderKit

A Render Ki t instance is optionally associated with a view, and supports components using the delegated
implementation programming model for the decoding and encoding of component values. It also supports Behavi or
instances for the rendering of client side behavior and decoding for queuing Behavi or Event s. Refer to Section 3.7
“Component Behavior Model” for more details about this feature. [P 1-start-renderkit]Each JSF implementation must
provide a default Render Ki t instance (named by the render kit identifier associated with the String constant

Render Ki t Fact ory. HTML_BASI C_ RENDER _KI T as described below) that is utilized if no other Render Ki t is
selected.[P1-end]

public Renderer getRenderer(String famly, String rendererType);

Return the Render er instance corresponding to the specified component f am | y and r ender er Type (if any),
which will typically be the value of the r ender er Type property of a Ul Conponent about to be decoded or encoded

public dientBehavi or Renderer getd ientBehavi orRenderer(String
type);

Return the O i ent Behavi or Render er instance corresponding to the specified behavior type.

public void addRenderer(String famly, String rendererType,
Renderer renderer);

Chapter 8 Rendering Model 8-1

public void addC i ent Behavi or Renderer (String type,
Cl i ent Behavi or Renderer renderer);

public Iterator<String> getd ientBehavi or Renderer Types();

Applications that wish to go beyond the capabilities of the standard Render Ki t that is provided by every JSF
implementation may either choose to create their own Render Ki t instances and register them with the

Render Ki t Fact or y instance (see Section 8.5 “RenderKitFactory™), or integrate additional (or replacement) supported
Render er instances into an existing Render Ki t instance. For example, it will be common for an application that
requires custom component classes and Render er s to register them with the standard Render Ki t provided by the JSF
implementation, at application startup time See Section 11.4.8 “Example Application Configuration Resource”for an
example of a f aces- confi g. xm configuration resource that defines two additional Renderer instances to be
registered in the default RenderKi t .

public ResponseWiter createResponseWiter(Witer witer, String
cont ent TypelLi st, String character Encodi ng);

Use the provided Wi t er to create a new ResponseW i t er instance for the specified character encoding.

The cont ent TypeLi st parameter is an "Accept header style" list of content types for this response, or nul | if the
Render Ki t should choose the best fit. [P1-start-contentTypeList]The Render Ki t must support a value for the

cont ent TypeLi st argument that comes straight from the Accept HTTP header, and therefore requires parsing
according to the specification of the Accept header.[P1-end] Please see Section 14.1 of RFC 2616 (the HTTP 1.1 RFC)
for the specification of the Accept header.

Implementors are advised to consult the get Char act er Encodi ng() method of class

javax. faces. servl et. Servl et Response to get the required value for the characterEncoding parameter for this
method. Since the Wi t er for this response will already have been obtained (due to it ultimately being passed to this
method), we know that the character encoding cannot change during the rendering of the response. Please see Section 6.5
“ResponseWriter”

publi ¢ ResponseStream creat eResponseSt rean(Quput St ream out) ;

Use the provided Qut put St r eamto create a new ResponseSt r eam instance.

publ i ¢ ResponseSt at eManager get ResponsesSt at eManager () ;

Return an instance of ResponseSt at eManager to handle rendering technology specific state management decisions..

public Iterator<String> get Conponent Fam |ies();
public Iterator<String> get RendererTypes(String conponent Fam |y);

The first method returns an | t er at or over the conponent - f ami | y entries supported by this Render Ki t . The
second one can be used to get an | t er at or over the r ender er - t ype entries for each of the conponent -fam |y
entries returned from the first method.

| 8-2 JavaServer Faces Specification < June 2009

8.2

Renderer

A Render er instance implements the decoding and encoding functionality of components, during the Apply Request
Values and Render Response phases of the request processing lifecycle, when the component has a non-nul | value for
the r ender er Type property.

public void decode(FacesContext context, U Conponent conponent);

For components utilizing the delegated implementation programming model, this method will be called during the apply
request values phase of the request processing lifecycle, for the purpose of converting the incoming request information
for this component back into a new local value. See the API reference for the Render er . decode() method for details
on its responsibilities.

public voi d encodeBegi n(FacesCont ext context, U Conponent
conponent) throws | CExcepti on;

public void encodeChil dren(FacesContext context, Ul Conponent
conponent) throws | CExcepti on;

publi ¢ voi d encodeEnd(FacesCont ext context, U Conponent conponent)
throws | OExcepti on;

For components utilizing the delegated implementation programming model, these methods will be called during the
Render Response phase of the request processing lifecycle. These methods have the same responsibilities as the
corresponding encodeBegi n(), encodeChi | dren(), and encodeEnd() methods of Ul Conponent (described
in Section 3.1.13 “Component Specialization Methods” and the corresponding Javadocs) when the component
implements the direct implementation programming model.

public String convertdientld(FacesContext context, String
clientld);

Converts a component-generated client identifier into one suitable for transmission to the client.

publi ¢ bool ean get RendersChil dren();

Return a flag indicating whether this Renderer is responsible for rendering the children of the component it is asked to
render.

public Object getConvertedVal ue(FacesCont ext context,
U Component conponent, Cbject submttedVal ue) throws
Convert er Excepti on;

Attempt to convert previously stored state information into an object of the type required for this component (optionally
using the registered Convert er for this component, if there is one). If conversion is successful, the new value should
be returned from this method; if not, a Convert er Excepti on should be thrown.

A Render er may listen for events using the Li st ener For annotation. Refer to the Javadocs for the
Li st ener For class for more details.

Chapter 8 Rendering Model 8-3

8.3 ClientBehaviorRenderer

A C i ent Behavi or Render er instance produces client side behavior for components in the form of script content. It
also participates in decoding and as such has the ability to enqueue server side Behavi or Event s. ..

public String getScript(CientBehaviorContext behavior Cont ext,
Cl i ent Behavi or behavi or);

Produce the script content that performs the client side behavi or. This method is called during the
Render Response phase of the request processing lifecycle.

public void decode(FacesContext context, U Conponent conponent,
Cl i ent Behavi or behavi or);

This method will be called during the apply request values phase of the request processing lifecycle, for the primary
purpose of enqueuing Behavi or Event s. All client behavior renderer implementations must extend from the
d i ent Behavi or Render er interface.

8.3.1 ClientBehaviorRenderer Registration

ClientBehaviorRenderer implementations may be registered in the JSF faces-config.xml or with an annotation.

XML Registration

<renderkit>
<renderkit-i d>HTM_._BASI C</ renderki t-id>
<cl i ent - behavi or - render er >
<cl i ent - behavi or - r ender er - t ype>cust om behavi or. G eet </ cl i ent -
behavi or -renderer-type>
<cl i ent - behavi or-renderer-cl ass>greet. G eet Renderer</client-
behavi or -renderer-cl ass>
</ cli ent - behavi or - r ender er >

Registration By Annotation

JSF provides the j avax. f aces. render. FacesBehavi or Renderer annot ati on.

@-acesd i ent Behavi or Render er (val ue="Hel | 0”)
public class MyRenderer extends CientBehavi or Renderer {

| 8-4 JavaServer Faces Specification < June 2009

ResponseStateManager

ResponseSt at eManager is the helper class to j avax. f aces. appl i cati on. St at eManager that knows the
specific rendering technology being used to generate the response. It is a singleton abstract class. This class knows the
mechanics of saving state, whether it be in hidden fields, session, or some combination of the two.

public Object getState(FacesContext context);

[P1-start-getState] The implementation must inspect the current request and return the component tree state Object passed
to it on a previous invocation of writeState()[P1-end]

public void witeState(FacesContext context, Cbject state) throws
| OExcepti on;

Take the argument St at e and write it into the output using the current ResponseW i t er, which must be correctly
positioned already.

If the state is to be written out to hidden fields, the implementation must take care to make all necessary character
replacements to make the Strings suitable for inclusion as an HTTP request parameter.

If the state saving method is client the implementation may encrypt the state to be saved to the client. We recommend
that the state be unreadable by the client, and also be tamper evident.

Write out the render kit identifier associated with this ResponseSt at eManager implementation with the name as
the value of the String constant ResponseSt at eManager . RENDER KI T_I D PARAM [Pl-start -
render ki ti d] This render kit identifier must not be written if:

= it is the default render kit identifier as returned by Appl i cati on. get Def aul t RenderKit1d() or
= the render kit identifier is the value of Render Ki t Fact ory. HTML_BASI C_RENDER KI T and
Application. get Def aul t RenderKi t1d() returns null.[P1-end]

ResponseSt at eManager . RENDER_KI T_I D_PARAM is the name of the request parameter used by the default
implementation of Vi ewHandl er . cal cul at eRender Ki t | d() to derive a render kit identifier..

publi ¢ bool ean i sPost back(FacesCont ext context);

Return t r ue if the current request is a postback. The default implementation returns t r ue if this
ResponseSt at eManager instance wrote out state on a previous request to which this request is a postback. Return
false otherwise.

Please see Section 7.9.7 “ResponseStateManager” for deprecated methods in ResponseSt at eManager .

public String getViewState(FacesContext context);

Return the view state as a St ri ng without any markup related to the rendering technology supported by this
ResponseSt at eManager .

Chapter 8 Rendering Model 8-5

8.5

RenderKitFactory

[P1-start-renderkitFactory]A single instance of j avax. f aces. r ender . Render Ki t Fact or y must be made
available to each JSF-based web application running in a servlet or portlet container.[P1-end] The factory instance can be
acquired by JSF implementations, or by application code, by executing

RenderKit Factory factory = (RenderKit Factory)
Fact or yFi nder . get Fact or y(Fact or yFi nder. RENDER _KI T_FACTQORY) ;

The Render Ki t Fact or y implementation class supports the following methods:

public RenderKit getRenderKit(FacesContext context, String
renderKitld);

Return a Render Ki t instance for the specified render kit identifier, possibly customized based on the dynamic
characteristics of the specified, (yet possibly null) FacesCont ext . For example, an implementation might choose a
different Render Ki t based on the “User-Agent” header included in the request, or the Local e that has been
established for the response view. Note that applications which depend on this feature are not guaranteed to be portable
across JSF implementations.

[P1-start-renderkitDefault]Every JSF implementation must provide a Render Ki t instance for a default render kit
identifier that is designated by the St ri ng constant Render Ki t Fact ory. HTM._BASI C_RENDER _KI T.[P1-end]
Additional render kit identifiers, and corresponding instances, can also be made available.

public Iterator<String> getRenderKitlds();

This method returns an | t er at or over the set of render kit identifiers supported by this factory. [P1-start-
renderkitlds]This set must include the value specified by Render Ki t Fact ory. HTM__BASI C_RENDER KI T.[P1-

public void addRenderKit (String renderKitld, RenderKit renderKit);

end]

Register a Render Ki t instance for the specified render kit identifier, replacing any previous RenderKit registered for
that identifier.

8.6

Standard HTML RenderKit Implementation

To ensure application portability, all JSF implementations are required to include support for a Render Ki t , and the
associated Render er s, that meet the requirements defined in this section, to generate textual markup that is compatible
with HTML 4.01. JSF implementors, and other parties, may also provide additional Render Ki t libraries, or additional
Render er s that are added to the standard Render Ki t at application startup time, but applications must ensure that the
standard Render er s are made available for the web application to utilize them.

| 8-6 JavaServer Faces Specification < June 2009

The required behavior of the standard HTML RenderKit is specified in a set of external HTML pages that accompany
this specification, entitled “The Standard HTML RenderKit”. The behavior described in these pages is normative, and are

required to be fulfilled by all implementations of JSF.

8.7

The Concrete HTML Component Classes

For each valid combination of Ul Conponent subclass and standard renderer given in the previous section, there is a
concrete class in the package j avax. f aces. conponent . ht m package. Each class in this package is a subclass of
an corresponding class in the j avax. f aces. conponent package, and adds strongly typed JavaBeans properties for

all of the renderer-dependent properties. These classes also implement the Behavi or Hol der

to have Behavi or t o Section 3.7 “Component Behavior Model” for additional

details..

attached to them Refer

TABLE 8-1 Concrete HTML Component Classes

javax.faces.component

javax.faces.component.html

class renderer-type class

UICommand javax.faces.Button HtmlCommandButton
UICommand javax.faces.Link HtmlCommandLink
UlData javax.faces.Table HtmlDataTable

UIForm javax.faces.Form HtmlForm

UlIGraphic javax.faces.Image HtmlGraphiclmage
UlInput javax.faces.Hidden HtmlInputHidden
Ullnput javax.faces.Secret HtmlInputSecret

Ullnput javax.faces.Text HtmlInputText

Ullnput javax.faces.Textarea HtmlInputTextarea
UlMessage javax.faces.Message HtmlMessage
UIMessages javax.faces.Messages HtmIMessages
UIOutput javax.faces.Format HtmlOutputFormat
UIOutput javax.faces.Label HtmlOutputLabel
UIOutput javax.faces.Link HtmlOutputLink
UIOutput javax.faces.Text HtmlOutputText
UIOutcomeTarget javax.faces.Link HtmlOutcomeTargetLink
UIOutcomeTarget javax.faces.Button HtmlOutcomeTargetButton
UlPanel javax.faces.Grid HtmlPanelGrid

UIPanel javax.faces.Group HtmlPanelGroup
UlSelectBoolean javax.faces.Checkbox HtmlSelectBooleanCheckb

UlSelectMany
UlSelectMany
UlSelectMany

javax.faces.Checkbox
javax.faces.Listbox

javax.faces.Menu

ox
HtmlSelectManyCheckbox
HtmlSelectManyListbox

HtmlSelectManyMenu

Chapter 8

Rendering Model

interface, enabling them

8-7

TABLE 8-1 Concrete HTML Component Classes

javax.faces.component

javax.faces.component.html

class renderer-type class

UlSelectOne javax.faces.Listbox HtmlSelectOneListbox
UlSelectOne javax.faces.Menu HtmlSelectOneMenu
UlSelectOne javax.faces.Radio HtmlSelectOneRadio

[P1-start-htmlComponent]As with the standard components in the j avax. f aces. conponent package, each HTML
component implementation class must define a static public final String constant named COMPONENT_TYPE, whose
value is “j avax. f aces. ” concatenated with the class name. HTML components, however, must not define a
COVPONENT_FAM LY constant, or override the get Fami | y() method they inherit from their superclass.[P1-end]

| 8-8 JavaServer Faces Specification « June 2009

Integration with JSP

Any JavaServer Faces implementations that claims compliance with this specification must include a complete
JavaServer Pages implementation, and expose this implementation to the runtime of any JSF application. JSF
applications, however, need not use JSP as their View Declaration Language (VDL). In fact, a JSF application is free to
use whatever technology it likes for its VDL, as long as that VDL itself complies with the JSF specification.

This chapter describes the JSP support required by JavaServer Faces. This JSP support is enabled by providing custom
actions so that a JSF user interface can be easy defined in a JSP page by adding tags corresponding to JSF Ul
components. Custom actions provided by a JSF implementation may be mixed with standard JSP actions and custom
actions from other libraries, as well as template text for layout, in the same JSP page.

For JSP version 2.0 and onward, the file extension “. j sf ” is reserved, and may optionally be used (typically by
authoring tools) to represent JSP pages containing JSF content!. When running in a JSP 1.2 environment, JSP authors
must give their JSP pages that contain JSF content a filename ending in “. j sSp”.

9.1

UIComponent Custom Actions

A JSP custom action (aka custom tag or tag) for a JSF Ul Conponent is constructed by combining properties and
attributes of a Java Ul component class with the rendering attributes supported by a specific Render er from a concrete
Render Ki t . For example, assume the existence of a concrete Render Ki t , HTMLRender Ki t , which supports three
Render er types for the Ul | nput component:

TABLE 9-1 Example Renderer Types

RendererType Render-Dependent Attributes
“Text” “size”

“Secret” “size”, “secretChar”
“Textarea” “size”, “rows”

1. Ifthis extension is used, it must be declared in the web application deployment descriptor, as described in the JSP 2.0 (or later) specification.

Chapter 9 Integration with JSSP 9-1

The tag library descriptor (TLD) file for the corresponding tag library, then, would define three custom actions—one per
Render er. Below is an example of a portion of the custom action definition for the i nput Text tag?:

<t ag>
<nane>i nput Text </ nanme>
<tag-cl ass>acne. ht nl . t ags. | nput Tag</t ag- cl ass>
<bodycont ent >JSP</ bodycont ent >
<attribute>
<nane>i d</ nane>
<requi r ed>f al se</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
<attri bute>
<name>val ue</ name>
<requi r ed>f al se</required>
<def erred- val ue>
<type>j ava. | ang. Qbj ect </ t ype>
<def erred- val ue>
</attribute>
<attri bute>
<nane>si ze</ nane>
<requi r ed>f al se</required>
<def erred- val ue>
<type>j ava. |l ang. | nt eger </ type>
<def erred- val ue>
</attribute>

</tag>

Note that the si ze attribute is derived from the Render er of type “Text”, while the i d and val ue attributes are
derived from the Ul | nput component class itself. Also note that the i d attribute has r t expr val ue setto t r ue. This
is to allow ${ } expressions in the i d attribute so that <c: f or Each> can include faces components that incorporate the
index into their id. Render Ki t implementors will generally provide a JSP tag library which includes component
custom actions corresponding to each of the component classes (or types) supported by each of the Render Ki t ’s
Render er s. See Section 8.1 “RenderKit” and Section 8.2 “Renderer” for details on the Render Ki t and Render er
APIs. JSF implementations must provide such a tag library for the standard HTML RenderKit (see Section 9.5 “Standard
HTML RenderKit Tag Library”).

9.2

9.2.1

Using UIComponent Custom Actions in JSP Pages

The following subsections define how a page author utilizes the custom actions provided by the Render Ki t
implementor in the JSP pages that create the user interface of a JSF-based web application.

Declaring the Tag Libraries

This specification hereby reserves the following Uniform Resource Identifier (URI) values to refer to the standard tag
libraries for the custom actions defined by JavaServer Faces:

= http://java.sun.com/jsf/core -- URI for the JavaServer Faces Core Tag Library

2. This example illustrates a non-normative convention for naming custom actions based on a combination of the component name and the renderer type. This
convention is useful, but not required; custom actions may be given any desired custom action name; however the convention is rigorously followed in the
Standard HTML RenderKit Tag Library.

| 9-2 JavaServer Faces Specification < June 2009

9.2.2

9.2.3

= http://java.sun.com/jsf/html -- URI for the JavaServer Faces Standard HTML RenderKit Tag Library

The page author must use the standard JSP t agl i b directive to declare the URI of each tag library to be utilized, as
well as the prefix used (within this page) to identify custom actions from this library. For example,

<U@taglib uri="http://java.sun.conm jsf/core” prefix="f" %
<U@taglib uri="http://java.sun.com jsf/htm” prefix="h" %

declares the unique resource identifiers of the tag libraries being used, as well as the prefixes to be used within the
current page for referencing actions from these libraries.

Including Components in a Page

A JSF Ul Conmponent custom action can be placed at any desired position in a JSP page that contains the t agl i b
directive for the corresponding tag library, subject to the following restrictions:

= When using a single JSP page to create the entire view, JSF component custom actions must be nested inside the
<f : vi ew> custom action from the JSF Core Tag Library.

The following example illustrates the general use of a UIComponent custom action in a JSP page. In this scenario:

<h:i nput Text id="usernane” val ue="#{l ogonBean. user nane}”/>

represents a Ul | nput field, to be rendered with the “Text” renderer type, and points to the username property of a

backing bean for the actual value. The i d attribute specifies the component id of a Ul Conponent instance, from within
the component tree, to which this custom action corresponds. If no i d is specified, one will be automatically generated

by the custom action implementation.

Custom actions that correspond to JSF Ul Conponent instances must subclass
j avax. f aces. webapp. Ul Conponent ELTag (see Section 11.2.6.3 “UlComponentELTag”)

During the Render Response phase of the request processing lifecycle, the appropriate encoding methods of the
component (or its associated Render er) will be utilized to generate the representation of this component in the
response page. In addition, the first time a particular page is rendered, the component tree may also be dynamically
constructed.

All markup other than Ul Conponent custom actions is processed by the JSP container, in the usual way. Therefore,
you can use such markup to perform layout control, or include non-JSF content, in conjunction with the actions that
represent Ul components.

Creating Components and Overriding Attributes

As Ul Conmponent custom actions are encountered during the processing of a JSP page, the custom action

implementation must check the component tree for the existence of a corresponding Ul Conponent , and (if not found)

create and configure a new component instance corresponding to this custom action. The details of this process (as
implemented in the findComponent() method of UlComponentClassicTagBase, for easy reuse) are as follows:

= If the component associated with this component custom action has been identified already, return it unchanged.
= Identify the component identifier for the component related to this UIComponent custom action, as follows:

« If the page author has specified a value for the i d attribute, use that value.

3. Consistent with the way that namespace prefixes work in XML, the actual prefix used is totally up to the page author, and has no semantic meaning. However,
the values shown above are the suggested defaults, which are used consistently in tag library examples throughout this specification.

Chapter 9 Integration with JSP

9.2.4

» Otherwise, call the cr eat eUni quel d() method of the Ul Vi ewRoot at the root of the component tree for this
view, and use that value.

= If this Ul Conponent custom action is creating a facet (that is, we are nested inside an <f : f acet > custom action),
determine if there is a facet of the component associated with our parent Ul Conponent custom action, with the
specified facet name, and proceed as follows:

« If such a facet already exists, take no additional action.

« If no such facet already exists, create a new Ul Conponent (by calling the cr eat eConponent () method on
the Appl i cat i on instance for this web application, passing the value returned by get Conponent Type(), set
the component identifier to the specified value, call set Properti es() passing the new component instance,
and add the new component as a facet of the component associated with our parent Ul Conponent custom action,
under the specified facet name.

= If this Ul Conponent custom action is not creating a facet (that is, we are not nested inside an <f : f acet > custom
action), determine if there is a child component of the component associated with our parent U Conmponent custom
action, with the specified component identifier, and proceed as follows:

» If such a child already exists, take no additional action.

« If no such child already exists, create a new Ul Conponent (by calling the cr eat eConponent () method on
the Appl i cat i on instance for this web application, passing the value returned by get Conponent Type(), set
the component identifier to the specified value, call set Properti es() passing the new component instance,
and add the new component as a child of the component associated with our parent Ul Conmponent custom action.

Deleting Components on Redisplay

In addition to the support for dynamically creating new components, as described above, UIComponent custom actions
will also delete child components (and facets) that are already present in the component tree, but are not rendered on this
display of the page. For example, consider a UIComponent custom action that is nested inside a JSTL <c: i f > custom
action whose condition is true when the page is initially rendered. As described in this section, a new UIComponent will
have been created and added as a child of the Ul Conponent corresponding to our parent U Conponent custom
action. If the page is re-rendered, but this time the <c: i f > condition is f al se, the previous child component will be
removed.

| 9-4 JavaServer Faces Specification < June 2009

9.2.5

9.2.6

Representing Component Hierarchies

Nested structures of Ul Conrponent custom actions will generally mirror the hierarchical relationships of the

corresponding Ul Conponent instances in the view that is associated with each JSP page. For example, assume that a
Ul For mcomponent (whose component id is | ogonFor m) contains a Ul Panel component used to manage the layout.

You might specify the contents of the form like this:

<h: form i d="1 ogonFor ni >
<h: panel Gid col ums="2">
<h: out put Label for="usernnanme”>
<h: out put Text val ue="Usernane: "/ >
</ h: out put Label >
<h: i nput Text id="usernane”
val ue="#{| ogonBean. user nane}”/ >
<h: out put Label for="password”>
<h: out put Text val ue="Password: "/ >
</ h: out put Label >
<h:i nput Secret id="password”
val ue="#{| ogonBean. password}”/ >
<h: commandBut t on i d="subm tButton” type="SUBM T”
acti on="#{l ogonBean. | ogon}” />
<h: commandButton id="resetButton” type="RESET"/>
</ h: panel Gi d>
</ h:fornmp

Registering Converters, Event Listeners, and Validators

Each JSF implementation is required to provide the core tag library (see Section 9.4 “JSF Core Tag Library’), which
includes custom actions that (when executed) create instances of a specified Convert er, Val ueChangeli st ener
Act i onLi st ener or Val i dat or implementation class, and register the created instance with the Ul Conponent
associated with the most immediately surrounding Ul Conponent custom action.

Using these facilities, the page author can manage all aspects of creating and configuring values associated with the
view, without having to resort to Java code. For example:

<h:i nput Text id="usernanme” val ue="#{| ogonBean. user nane}” >
<f:val i dateLength m ni mun="6"/>
</ h:i nput Text >

associates a validation check (that the value entered by the user must contain at least six characters) with the username

Ul I nput component being described.

Following are usage examples for the val ueChangeli st ener and acti onLi st ener custom actions.

<h:i nput Text id="nmaxUsers”>

<f:convert Nunber integerOnly="true”/>

<f: val ueChangelLi st ener

t ype="cust om MyVal ueChangeli st ener"/ >

</ h:i nput Text >
<h: commandBut t on | abel =" Logi n" >

<f:actionListener type="custom MyActionListener"/>
</ h: conmandBut t on>

Chapter 9 Integration with JSP

9-5

9.2.7

9.2.8

This example causes a Converter and a Val ueChangeLi st ener of the user specified type to be instantiated and
added as to the enclosing Ul | nput component, and an Act i onLi st ener is instantiated and added to the enclosing
Ul Command component. If the user specified type does not implement the proper listener interface a JSPExcept i on
must be thrown.

Using Facets

A Facet is a subordinate UIComponent that has a special relationship to its parent Ul Conponent , as described in
Section 3.1.9 “Facet Management”. Facets can be defined in a JSP page using the <f: f acet > custom action. Each facet
action must have one and only one child UIComponent custom action®. For example:

<h: dataTable ...>
<f:facet name="header”>
<h: out put Text val ue="Custoner List”/>
</f:facet>
<h: col um>
<f:facet nane="header”>
<h: out put Text val ue="Account 1d"/>
</f:facet>
<h: out put Text id="accountld” val ue=
"#{customer.account|d}”/>
</ h: col um>

</ h: dat aTabl e>

Interoperability with JSP Template Text and Other Tag Libraries

It is permissible to use other tag libraries, such as the JSP Standard Tag Library (JSTL) in the same JSP page with

Ul Conponent custom actions that correspond to JSF components, subject to certain restrictions. When JSF component
actions are nested inside custom actions from other libraries, or combined with template text, the following behaviors
must be supported:

= JSF component custom actions nested inside a custom action that conditionally renders its body (such as JSTL’s
<c:if>or <c: choose>) must contain a manually assigned i d attribute.

= Interoperation with the JSTL Internationalization-Capable Formatting library (typically used with the “f nt * prefix) is
restricted as follows:

« The <f nt: par seDat e> and <f nt : par seNunber > custom actions should not be used. The corresponding JSF
facility is to use an <h: i nput Text > component custom action with an appropriate Dat eTi meConverter or
Nurber Converter.

« The <fnt: request Encodi ng> custom action should not be used. By the time it is executed, the request
parameters will have already been parsed, so any change in the setting here will have no impact. JSF handles
character set issues automatically in most cases. To use a fixed character set in exceptional circumstances, use the
a “<%@ page contentType="[content-type];[charset]” % directive.

« The <f nt: set Local e/ > custom action should not be used. Even though it might work in some circumstances,
it would result in JSF and JSTL assuming different locales. If the two locales use different character sets, the
results will be undefined. Applications should use JSF facilities for setting the | ocal e property on the
Ul Vi ewRoot component to change locales for a particular user.

4. If you need multiple components in a facet, nest them inside a <h:panelGroup> custom action that is the value of the facet.

| 9-6 JavaServer Faces Specification < June 2009

9.2.9

Composing Pages from Multiple Sources

JSP pages can be composed from multiple sources using several mechanisms:

9.3

The <%@ ncl ude% directive performs a compile-time inclusion of a specified source file into the page being
compiled. From the perspective of JSF, such inclusions are transparent—the page is compiled as if the inclusions had
been performed before compilation was initiated.

Several mechanisms (including the <j sp: i ncl ude> standard action, the JSTL <c: i nport > custom action when
referencing a resource in the same webapp, and a call to Request Di spat cher. i ncl ude() for a resource in the
same webapp) perform a runtime dynamic inclusion of the results of including the response content of the requested
page resource in place of the include action. Any JSF components created by execution of JSF component custom
actions in the included resource will be grafted onto the component tree, just as if the source text of the included page
had appeared in the calling page at the position of the include action.

For mechanisms that aggregate content by other means (such as use of an Ht t pURLConnecti on, a

Request Di spat cher. i ncl ude() on a resource from a different web application, or accessing an external
resource with the JSTL <c: i npor t > custom action on a resource from a different web application, only the
response content of the aggregation request is available. Therefore, any use of JSF components in the generation of
such a response are not combined with the component tree for the current page.

UIComponent Custom Action Implementation
Requirements

The custom action implementation classes for Ul Conponent custom actions must conform to all of the requirements
defined in the JavaServer Pages Specification. In addition, they must meet the following JSF-specific requirements:

Extend the Ul Conponent ELTag or Ul Conponent ELBodyTag base class, so that JSF implementations can
recognize Ul Conponent custom actions versus others.

Provide a public get Conponent Type() method that returns a String-valued component type registered with the
Appl i cat i on instance for this web application. The value returned by this method will be passed to
Application. creat eConponent () when a new Ul Conmponent instance associated with this custom action is
to be created.

Provide a public get Render er Type() method that returns a String-valued renderer type registered with the
Render Ki t instance for the currently selected RenderKit, or nul | if there should be no associated
Render er. The value returned by this method will be used to set the r ender er Type property of any
UIComponent created by this custom action.

Provide setter methods taking a j avax. el . Val ueExpr essi on or j avax. el . Met hodExpr essi on parameter
for all set-able (from a custom action) properties of the corresponding Ul Conponent class, and all additional set-
able (from a custom action) attributes supported by the corresponding Render er.

On the method that causes a Ul Conponent instance to be added to the tree, verify that the component id of that
Ul Conmponent is unique within the scope of the closest ancestor component that is a Nam ngCont ai ner. If this
constraint is not met, throw JSpExcepti on.

Provide a protected set Properti es() method of type voi d that takes a Ul Conponent instance as parameter.
The implementation of this method must perform the following tasks:

« Call super. set Properties(), passing the same U Conponent instance received as a parameter.

5.

InaJSP 2.0 or later environment, the same effect can be accomplished by using <include-prelude> and <include-coda> elements in the <jsp-config> element in
the web application deployment descriptor.

Chapter 9 Integration with JSSP ~ 9-7

» For each non-null custom action attribute that corresponds to a property based attribute to be set on the underlying
component, call either set Val ueExpr essi on() orget Attri butes(). put (), depending on whether or
not a value expression was specified as the custom action attribute value (performing any required type
conversion). For example, assume that title is the name of a render-dependent attribute for this component:

public void setTitle(javax.el.Val ueExpression title) {
this.title = title;
}

protected void setProperties(U Conponent conponent) throws
JspException {
super . set Properti es(comnmponent);
if (title !=null) {
try {
conponent . set Val ueExpression(“title”, title);
}

catch (ELException e) {
t hr ow new JspException(e);

}

» For each non-null custom action attribute that corresponds to a method based attribute to be set on the underlying
component, the value of the attribute must be a method reference expression. We have a number of wrapper classes
to turn a MethodExpression into the appropriate listener. For example, assume that val ueChangeli st ener is
the name of an attribute for this component:

public voi d set Val ueChangelLi st ener (j avax. el . Met hodExpr essi on ne)

{

val ueChangelLi st ener = ne;

}

protected voi d setProperties(U Conponent conponent) {
super . set Properti es(comnmponent);
Met hodExpr essi onVal ueChangeli st ener |istener =
new Met hodExpr essi onVal ueChangelLi st ener (val ueChangeli st ener);
i nput . addVal ueChangelLi stener (| i stener);

| 9-8 JavaServer Faces Specification < June 2009

« Non-null custom action attributes that correspond to a writable property to be set on the underlying component are
handled in a similar fashion. For example, assume a custom action for the Ul Dat a component is being created
that needs to deal with the r ows property (which is of type i nt):

public void set Rows(javax. el . Val ueExpressi on rows) ({
this.rows = rows;

}

protected void setProperties(U Conponent conponent) {

super . set Properti es(conmponent);
if (rows !'=null) {

try {

conponent . set Val ueExpressi on(“rows”, rows);
} catch (ELException e) {
t hr ow new JspException(e);

}

}

= Optionally, provide a public r el ease() method of type voi d, taking no parameters, to be called when the JSP
page handler releases this custom action instance. If implemented, the method must perform the following tasks:

« Call super.rel ease() to invoke the superclass’s release functionality.

= Clear the instance variables representing the values for set-able custom action attributes (for example, by setting
String values to null).

= Optionally provide overridden implementations for the following method to fine tune the behavior of your
Ul Conmponent custom action implementation class: encodeConponent ().

It is technically possible to override other public and protected methods of the Ul Conponent ELTag or

Ul Conmponent BodyELTag base class; however, it is likely that overriding these methods will interfere with the
functionality that other portions of the JSF implementation are assuming to be present, so overriding these methods is
strongly discouraged.

The definition of each Ul Conmponent custom action in the corresponding tag library descriptor (TLD) must conform to
the following requirements:
= The <body- cont ent > element for the custom action itself must specify JSP.
= For each attribute that is intended to be passed on to the underlying faces component:
» The attribute may not be named i d. This name is reserved for Faces use.

« If the attribute represents a method expression, it must have a <def er r ed- met hod> element containing a
<met hod- si gnat ur e> element that describes the signature of the method pointed to by the expression, as
described in section JSP.C.1 in the JSP 2.1 specification.

« Otherwise, the attribute must be a value based attribute, and must have a <def er r ed- val ue> element
containing a <type> element which describes the expected type to which the expression will evaluate. Please see
section JSP.C.1 in the JSP 2.1 specification for details.

9.3.1 Considerations for Custom Actions written for JavaServer Faces 1.1
and 1.0

Versions 1.0 and 1.1 of the JavaServer Faces spec included their own EL that happend to have similar semantics to the
JSP EL, but the implementation was bundled into the Faces implementation. This version leverages a new Unified EL
facility provided by JSP. This change has necessitated deprecating some methods and classes, including the classes
Custom Actions as their base class for tags that expose Faces components to the JSP page. This section explains how
custom actions built for Faces 1.0 and 1.1 can continue to run Faces 1.2.

Chapter 9 Integration with JSSP ~ 9-9

9.3.1.1

9.3.1.2

Past and Present Tag constraints

Faces 1.0 and 1.1 were targeted at JSP version 1.2 and Servlet version 2.3. This decision brought about several
constraints for faces tag attributes:

= all tag attributes had to declare rt expr val ue to be f al se.
= all tag attributes had to take the type j ava. | ang. Stri ng.

= Faces had to choose a new expression delimiter, #{ } , to prevent the JSP container from prematurely evaluating the
expression. This became known as deferred evaluation.

= Because Faces had introduced its own version of the EL, the custom tag action layer had to do a lot of extra work to
“value binding enable” its attributes, calling Faces EL APIs to turn the String attribute value into an instance of
Val ueBi ndi ng or Met hodBi ndi ng.

» Faces provided the Ul Conponent Tag and Ul Conponent BodyTag base classes that were designed to adhere to
the above rules.

Tags that use the Unified EL have the following constraints:

= all tag attributes must not have an rt expr val ue attribute

= all tag attributes must accept j avax. el . Val ueExpr essi on or j avax. el . Met hodExpr essi on as their type
(depending on if the attribute refers to a method or a value).

= all tag attributes (except for i d) must have a <def err ed- val ue> or <def er r ed- net hod> element. See
Section 9.4 “JSF Core Tag Library” in the description for the Attributes column.

= The JSP Container will hand the tag setter a j avax. el . Val ueExpr essi on or
javax. el . Met hodExpr essi on directly, so there is no need to use the Faces API to create them.

= The Ul Conponent Tag and Ul Conponent BodyTag classes are deprecated and Faces provides new base class,
UIComponentELTag to the new rules for taglibs in Faces.

It’s very important to note that we still are using #{} as the delimiters for expressions that appear in a JSP page in the
value of a tag attribute, but when the Java API is used, either ${} or #{} may be used for delimiters.

Faces 1.0 and 1.1 Taglib migration story

It is imperitive that applications written for Faces 1.0 and 1.1 continue to run on Faces 1.2. From the JSP perspective,
this means

1. that JSP pages using the standard h: and f: tags must work without change
2. that JSP pages using custom faces taglibs must work without change
The first item is enabled by re-writing the h: and f: taglibs which must be provided by the Faces implementor.

The second item is enabled as follows. For discussion the term j Sp- ver si on is used to denote the j Sp- ver si on
element in a JSP 1.2 (and earlier) TLD, as well as the ver si on element in a JSP 2.0 (and later) TLD. The JSP container
must examine the j Sp- ver si on element of the TLD for a taglib. If the] Sp- ver si on is less than 2.1, the taglib is
deemed to be a Faces 1.0 or 1.1 taglib and the container must ignore all expressions that use #{} as delimiters, except for
those appearing in tag attribute with a property setter that takes a j avax. el . Val ueExpr essi on or

j avax. el . Met hodExpr essi on. If the j sp- ver si on is 2.1 or greater, the taglib is deemed to be a Faces 1.2 or
later taglib and the JSP container is aware of #{} expressions.

| 9-10 JavaServer Faces Specification « June 2009

9.4

JSF Core Tag Library

[P1-start jsf core taglib requirements]| All JSF implementations must provide a tag library containing core actions
(described below) that are independent of a particular Render Ki t . The corresponding tag library descriptor must meet
the following requirements:

= Must declare a tag library version (<t | i b-ver si on>) value of 1. 2.

= Must declare a URI (<uri >) value of htt p: //j ava. sun. com j sf/ core.

= Must be included in the META- | NF directory of a JAR file containing the corresponding implementation classes,
suitable for inclusion with a web application, such that the tag library descriptor will be located automatically by the
algorithm described in Section 7.3 of the JavaServer Pages Specification (version 2.1). [P1-end]

[P1-start no javascript in jsf core taglib] The tags in the implementation of this tag library must not cause JavaScript to
be rendered to the client. Doing so would break the requirement that the JSF Core Tag library is independent of any
specific RenderKit. [P1-end]

Each custom action included in the JSF Core Tag Library is documented in a subsection below, with the following
outline for each action:

= Name—The name of this custom action, as used in a JSP page.

= Short Description—A summary of the behavior implemented by this custom action.

= Syntax—One or more examples of using this custom action, with the required and optional sets of attributes that may
be used together. If the tag may have an i d attribute, its value may be a literal string, or an immediate, non-defferd
expression, such as “user Name” or “user ${i } ” without the quotes.

= Body Content—The type of nested content for this custom action, using one of the standard values enpty, JSP, or
t agdependent as described in the JSP specification. This section also describes restrictions on the types of content
(template text, JSF core custom actions, JSF Ul Conponent custom actions, and/or other custom actions) that can be
nested in the body of this custom action.

= Attributes—A table containing one row for each defined attribute for this custom action. The following columns
provide descriptive information about each attribute:

= Name—Name of this attribute, as it must be used in the page. If the name of the attribute is in italics, it is required.
= Expr—The type of dynamic expression (if any) that can be used in this attribute value. Legal values are VE (this
may be a literal or a value expression), ME (this may be a method expression), or NONE (this attribute accepts
literal values only). If the Expr column is VE, the corresponding <at t ri but e> declaration in the TLD must
contain a <def er r ed- val ue> element, optionally containing a <t ype> element that contains the fully
qualified java class name of the expected type of the expression. If <t ype> is omitted, Object.class is assumed. If
the Expr column is ME, the corresponding <at t ri but e> declaration in the TLD must contain a <def err ed-
met hod> element, containing a <met hod- si gnat ur e> element that describes the exact method signature for
the method. In this case, the Description column the description column contains the method signature.
= Type—Fully qualified Java class or primitive type of this attribute.
= Description—The functional meaning of this attribute’s value.
= Constraints—Additional constraints enforced by this action, such as combinations of attributes that may be used
together.
= Description—Details about the functionality provided by this custom action.

Chapter 9 Integration with JSSP 9-11

9.4.1

<f:actionListener>

Register an Act i onLi st ener instance on the Ul Conponent associated with the closest parent U Conponent
custom action.

Syntax

<f:actionListener type="fully-qualified-classnane” bindi ng="val ue Expression”/>

Body Content

empty.
Attributes
Name Expr Type Description
type VE String Fully qualified Java class name of an
Acti onLi st ener to be created and registered
bi nding VE Val ueEx A Val ueExpr essi on expression that
pressi o evaluates to an object that implements
n j avax. faces. event . Acti onLi st ener

Constraints

= Must be nested inside a Ul Conponent custom action.

= The corresponding Ul Conponent implementation class must implement Act i onSour ce, and therefore define a
public addAct i onLi st ener () method that accepts an Act i onLi st ener parameter.

= The specified listener class must implement j avax. f aces. event . Acti onLi st ener.

= type and/or bi ndi ng must be specified.

[P1-start f:actionListener constraints] If this tag is not nested inside a Ul Conponent custom action, or the
Ul Conponent implementation class does not correctly implement Act i onSour ce, or the specified listener class does
not implement j avax. f aces. event. Acti onLi st ener, throw a JspExcepti on. [Pl-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling
Ul Component Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, check the bi ndi ng attribute.

If bi ndi ng is set, create a Val ueExpr essi on by invoking Appl i cati on. cr eat eVal ueExpr essi on() with bi ndi ng
as the expr essi on argument, and Obj ect . cl ass as the expect edType argument. Use the Val ueExpr essi on to
obtain a reference to the Act i onLi st ener instance. If there is no exception thrown, and

Val ueExpr essi on. get Val ue() returned a non-null object that implements j avax. f aces. event . Acti onLi st ener,
register it by calling addAct i onLi st ener (). If there was an exception thrown, rethrow the exception as a
JspExcepti on.

If the listener instance could not be created, check the t ype attribute. If the t ype attribute is set, instantiate an
instance of the specified class, and register it by calling addAct i onLi st ener () . If the bi ndi ng attribute was also
set, evaluate the expression into a Val ueExpr essi on and store the listener instance by calling set Val ue() on the
Val ueExpr essi on. If there was an exception thrown, rethrow the exception as a JSpExcept i on.

As an alternative to using the bi ndi ng and/or t ype attributes, you may also register a method in a backing bean class
to receive Act i onEvent notifications, by using the act i onLi st ener attribute on the corresponding Ul Conponent
custom action.

| 9-12 JavaServer Faces Specification « June 2009

94.2 <f:attribute>

Add an attribute or Val ueExpr essi on on the Ul Conponent associated with the closest parent U Conponent
custom action.

Syntax

<f:attribute nanme="attri bute-nane” value="attri bute-val ue”/>

Body Content

empty.

Attributes

Name Expr Type Description

nanme VE String Name of the component attribute to be set
val ue VE oj ect Value of the component attribute to be set

Constraints

= Must be nested inside a Ul Conponent custom action.
Description

Locate the closest parent Ul Conponent custom action instance by calling

U Component Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . Call the get Val ue()
method on the argument nane to obtain the name of the attribute. If the associated component already has a component
attribute with that name, take no action. Otherwise, call the i SLi t er al Text () method on the argument val ue. If it
returns t r ue, store the value in the component’s attribute Map under the name derived above. If it returns f al se, store
the Val ueExpr essi on in the component’s Val ueExpr essi on Map under the name derived above.

There is no standard implementation class for this action. It must be provided by the implementation.

Chapter 9 Integration with JSSP 913

9.4.3 <f:convertDateTime>

Register a Dat eTi neConvert er instance on the U Conponent associated with the closest parent Ul Conponent
custom action.

Syntax

<f:convert Dat eTi ne
[dateStyl e="{defaul t|short|mediumlong|full}”]
[l ocal e="{l ocal e” | string}]
[pattern="pattern”]
[timeStyle="{default]|short]| mediunilong|full}”]
[tineZone="{tineZone| string}”]
[type="{date|tine| both}"]
[bi ndi ng="Val ue Expression”]/>

Body Content

empty.

| 9-14 JavaServer Faces Specification « June 2009

Attributes

Name

Expr

Type

Description

dat e-
Style

| ocal e

pattern

tine-
Style

time-
Zone

type

bi ndi ng

VE

VE

VE

VE

VE

VE

VE

String

Local e
or
String

String

String

timezon
e or
String

String

Val ueEx
pressio
n

Predefined formatting style which
determ nes how the date conponent
of a date string is to be
formatted and parsed. Applied only
if type is “date” or “both”.

Local e whose predefined styles for
dates and tines are used during
formatting or parsing. If not
specified, the Locale returned by
FacesCont ext . get Vi ewRoot () . get Local
e() will be used. Value nust be
either a VE expression that
evaluates to a java.util.Locale
instance, or a String that is valid
to pass as the first argunent to
the constructor

java.util.Local e(String |anguage,
String country). The enpty string
is passed as the second argunent.

Custom formatting pattern which
determ nes how the date/tinme string
should be formatted and parsed.

Predefined formatting style which
determ nes how the tine conponent
of a date string is to be
formatted and parsed. Applied only
if type is “tinme” or “both”.

Tinme zone in which to interpret any
tinme information in the date
string. Value nust be either a VE
expression that evaluates to a
java.util.TineZone instance, or a
String that is a timezone ID as
described in the javadocs for
java.util.Ti neZone. get Ti neZone().

Speci fies whether the string val ue
will contain a date, time, or both.

A Val ueExpr essi on expression that
evaluates to an object that implements
j avax. faces. convert. Converter

Constraints

= Must be nested inside a Ul Conponent

whose value is aj ava. util . Date (or appropriate subclass).
= If pattern is specified, the pattern syntax must use the pattern syntax specified by
j ava. t ext. Si npl eDat eFor mat .

= If pattern is not specified, formatted strings will contain a date value, a time value, or both depending on the

custom action whose component class implements Val ueHol der, and

specified t ype. When date or time values are included, they will be formatted according to the specified
dateStyl e andti neStyl e, respectively.
= if t ype is not specified:
« ifdateStyleissetandti meStyl e is not, t ype defaults to dat e
« iftimeStyl e is set and dat eSt yl e is not, t ype defaults to t i ne
« ifboth dateStyl e andti neStyl e are set, t ype defaults to bot h

Chapter 9

Integration with JSP

9-15

[P1-start f:convertDateTime constraints] If this tag is not nested inside a Ul Conponent custom action, or the
Ul Component implementation class does not correctly implement Val ueHol der, throw a JspExcepti on [Pl-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Conmponent C assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create, call cr eat eConverter () and register the returned Converter instance
on the associated UIComponent.

[P1-start f:convertDateTime implementation requirements]The implementation class for this action must meet the
following requirements:

= Must extend j avax. f aces. webapp. Convert er ELTag.
= The creat eConvert er () method must:

« Ifbi ndi ng is non-null, call get Val ue() on it to obtain a reference to the Convert er instance. If there is no
exception thrown, and bi ndi ng. get Val ue() returned a non-null object that implements
j avax. f aces. convert. Convert er, it must then cast the returned instance to
j avax. faces. convert. Dat eTi meConvert er and configure its properties based on the specified attributes
for this custom action, and return the configured instance. If there was an exception thrown, rethrow the exception
as a JspExcepti on.

« use the convert er | d if the converter instance could not be created from the bi ndi ng attribute. Call the
creat eConverter () method of the Appl i cat i on instance for this application, passing converter id
“javax.faces.DateTime”. If the bi ndi ng attribute was also set, store the converter instance by calling
bi ndi ng. set Val ue() . It must then cast the returned instance to
j avax. faces. convert. Dat eTi meConvert er and configure its properties based on the specified attributes
for this custom action, and return the configured instance. If there was an exception thrown, rethrow the exception
as a JspExcepti on.

= If the type attribute is not specified, it defaults as follows:

« If dateStyle is specified but timeStyle is not specified, default to date.
= If dateStyle is not specified but timeStyle is specified, default to time.
» If both dateStyle and timeStyle are specified, default to both. [P1-end]

| 9-16 JavaServer Faces Specification * June 2009

94.4 <f:convertNumber>

Register a Nurmber Convert er instance on the Ul Conponent associated with the closest parent Ul Conponent
custom action.

Syntax

<f:convert Number
[currencyCode="currencyCode”]
[currencySynbol =" cur rencySynbol "]
[groupi ngUsed="{true|fal se}"]
[integerOnly="{true|false}”]
[l ocal e="1ocal e”]
[maxFractionDi gits="maxFracti onDi gits”]
[maxl ntegerDi gi t s="maxI ntegerDi gits”]
[m nFractionDi gits="m nFracti onDigits”]
[mMnintegerDigits="nm nintegerDigits”]
[pattern="pattern”]
[type="{nunber | currency| percent}”]

[bi ndi ng="Val ue Expression”]/>
Body Content

empty.

Chapter 9 Integration with JSP ~ 9-17

Attributes

Name Expr Type Description
currenc VE String 1 SO 4217 currency code, applied
yCode only when formatting currencies.
currenc VE String Currency synbol, applied only when
ySynbol formatting currencies.
groupin VE bool ean Specifies whether formatted out put
gUsed wi Il contain grouping separators.
integer VE bool ean Specifies whether only the integer
Only part of the value will be parsed.
| ocal e VE j ava. ut Local e whose predefined styles for
il.Loca nunbers are used during formatting
Il e or parsing. If not specified, the

Local e returned by
FacesCont ext . get Vi ewRoot () . get Local

e() will be used.
maxFrac VE i nt Maxi mum nunber of digits that wll
tionDig be formatted in the fractional
its portion of the output.
maxl nte VE i nt Maxi mum nunber of digits that will
ger Di gi be formatted in the integer portion
ts of the output
m nFrac VE i nt M ni mum nunber of digits that wll
tionDig be formatted in the fractional
its portion of the output.
mninte VE i nt M ni mum nunber of digits that wll
ger Di gi be formatted in the integer portion
ts of the output.
pattern VE String Custom formatting pattern which

determ nes how the nunber string
should be formatted and parsed.

type VE String Speci fi es whether the value will be
parsed and formatted as a nunber,
currency, or percentage.

bi nding VE Val ueEx A Val ueExpressi on expression that
pressi o evaluates to an object that implements
n j avax. faces. convert. Converter

Constraints

= Must be nested inside a Ul Conponent custom action whose component class implements Val ueHol der, and
whose value is a numeric wrapper class or primitive.

=« If pattern is specified, the pattern syntax must use the pattern syntax specified by
java. text. Deci nal For mat .

= If pattern is not specified, formatting and parsing will be based on the specified t ype.

[P1-start f:convertNumber constraints] If this tag is not nested inside a Ul Conponent custom action, or the
Ul Component implementation class does not correctly implement Val ueHol der, throw a JspExcept i on. [P1-end]

| 9-18 JavaServer Faces Specification * June 2009

Description

Locate the closest parent U Conponent custom action instance by calling

Ul Conponent Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create, call cr eat eConverter () and register the returned Converter instance
on the associated UIComponent.

[P1-start f:convertNumber implementation] The implementation class for this action must meet the following
requirements:

= Must extend j avax. f aces. webapp. Convert er ELTag.

= The cr eat eConverter () method must:

= If bi ndi ng is non-null, call bi ndi ng. get Val ue() to obtain a reference to the Convert er instance. If there is
no exception thrown, and bi ndi ng. get Val ue() returned a non-null object that implements
j avax. faces. convert. Converter, it must then cast the returned instance to
j avax. faces. convert. Number Convert er and configure its properties based on the specified attributes for
this custom action, and return the configured instance. If there was an exception thrown, rethrow the exception as a
JspExcepti on.

= use the convert er | d if the converter instance could not be created from the bi ndi ng attribute. Call the
creat eConvert er () method of the Appl i cati on instance for this application, passing converter id
“javax.faces.Number”. If the bi ndi ng attribute was also set, store the converter instance by calling
bi ndi ng. set Val ue() . It must then cast the returned instance to
j avax. faces. convert. Nunmber Convert er and configure its properties based on the specified attributes for
this custom action, and return the configured instance. If there was an exception thrown, rethrow the exception as a
JspException. [Pl-end]

Chapter 9 Integration with JSSP ~ 9-19

9.4.5

<f:converter>

Register a named Convert er instance on the Ul Conponent associated with the closest parent U Conponent
custom action.

Syntax

<f:converter converterld="converterld” binding="Val ue Expression”/>

Body Content

empty

Attributes

Name Expr Type Description

convert VE String Converter identifier of the converter to be created.
erld

binding VE ValueExpr A Val ueExpressi on expression that

ession evaluates to an object that implements
j avax. faces. convert. Converter

Constraints

= Must be nested inside a Ul Component custom action whose component class implements Val ueHol der.

= converterld and/or bi ndi ng must be specified.

[P1-start f:converter constraints] If this tag is not nested inside a Ul Conponent custom action, or the Ul Conponent
implementation class does not correctly implement Val ueHol der, throw a JspExcept i on. [Pl-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Component Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create, call cr eat eConverter () and register the returned Converter instance
on the associated UIComponent.

[P1-start f:converter implementation] The implementation class for this action must meet the following requirements:
= Must extend j avax. f aces. webapp. ConverterJspTag.

= The cr eat eConvert er () method must:
« If bi ndi ng is non-null, call bi ndi ng. get Val ue() to obtain a reference to the Convert er instance. If

there is no exception thrown, and bi ndi ng. get Val ue() returned a non-null object that implements
j avax. faces. convert. Converter, register it by calling set Converter (). If there was an exception
thrown, rethrow the exception as a JSpExcepti on. Use the convert er| d attribute if the converter instance
could not be created from the bi ndi ng attribute. If the converterld attribute is set, call the
creat eConvert er () method of the Appl i cat i on instance for this application, passing converter id specified
by their converterld attribute. If the bi ndi ng attribute was also set, store the converter instance by calling
bi ndi ng. set Val ue() . Register the converter instance by calling set Converter (). If there was an
exception thrown, rethrow the exception as a JspExcepti on. [P1-end]

| 9-20 JavaServer Faces Specification « June 2009

9.4.6

<f:facet>

Register a named facet (see Section 3.1.9 “Facet Management™) on the Ul Conponent associated with the closest parent
Ul Conponent custom action.

Syntax

<f:facet nane="facet-nane”/>

Body Content

JSP. However, only a single UlComponent custom action (and any related nested JSF custom actions) is allowed; no
template text or other custom actions may be present.

Attributes
Name Expr Type Description
nanme NONE String Name of the facet to be created

Constraints

= [Pl-start f:facet constraints] Must be nested inside a Ul Conponent custom action.
= Exactly one Ul Conponent custom action must be nested inside this custom action (although the nested component
custom action could itself have nested children). [P1-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Component Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the associated component
does not already have a facet with a name specified by this custom action’s name attribute, create a facet with this name
from the Ul Conponent custom action that is nested within this custom action.

[P1-start f:facet implementation] The implementation class must be, or extend, | avax. f aces. webapp. Facet Tag.
[P1-end]

Chapter 9 Integration with JSP 9-21

9.4.7

<f:loadBundle>

Load a resource bundle localized for the locale of the current view, and expose it (as a Map) in the request attributes for
the current request.

Syntax

<f:l oadBundl e basenane="resour ce-bundl e-nane” var="attri but eKey”/>

Body Content

empty

Attributes

Name Expr Type Description

basenam VE String Base name of the resource bundle to be loaded.

e

var NONE String Name of a request scope attribute under which the

resource bundle will be exposed as a Map.

Constraints

» [Pl-start f:loadBundle constraints] Must be nested inside an <f : vi ew> custom action. [P1-end]

Description

Load the resource bundle specified by the basenane attribute, localized for the Locale of the Ul Vi ewRoot component
of the current view, and expose its key-values pairs as a Map under the attribute key specified by the var attribute. In
this way, value binding expressions may be used to conveniently retrieve localized values. If the named bundle is not
found, throw JspExcepti on.

If the get () method for the Map instance exposed by this custom action is passed a key value that is not present (that
is, there is no underlying resource value for that key), the literal string “???f00???” (where “foo” is replaced by the key
the String representation of the key that was requested) must be returned, rather than the standard Map contract return
value of nul | .

| 9-22 JavaServer Faces Specification * June 2009

9.4.8 <f:param>

Add a child Ul Par anet er component to the Ul Conmponent associated with the closest parent Ul Conponent custom
action.

Syntax

Syntax 1: Unnamed value

<f:param [i d="conponent | dOr | nmedi at eExpr essi on”] val ue="par anet er - val ue

[bi ndi ng=" conponent Ref erence”]/ >

Syntax 2: Named value
<f:param [i d="conponent | dOr | mredi at eExpr essi on”]
[bi ndi ng=" conponent Ref er ence”]

nane="par anet er - nane” val ue="par anet er-val ue”/ >

Body Content

empty.

Attributes

Name Expr Type Description

binding VE ValueExpr ~ ValueExpression expression to a backing bean

ession property bound to the component instance for the

UlComponent created by this custom action

id NONE String Component identifier of a Ul Par anet er
component

nanme VE String Name of the parameter to be set

val ue VE String Value of the parameter to be set

Constraints

= [Pl-start fiparam constraints] Must be nested inside a Ul Conponent custom action. [P1-end]

Description

Locate the closest parent U Conponent custom action instance by calling

Ul Conponent Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create a new Ul Par amet er component, and attach it as a child of the associated
Ul Conponent . It is up to the parent Ul Conponent to determine how it will handle its Ul Par anmet er childr en.

[P1-start f:param implementation] The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. U Conponent ELTag.
= The get Conponent Type() method must return “Par amet er .
= The get Render er Type() method must return nul | . [P1-end]

Chapter 9 Integration with JSP ~ 9-23

9.4.9

<f:phaseListener>

Register a PhaselLi st ener instance on the Ul Vi ewRoot associated with the closest parent Ul Vi ewRoot custom
action.

Syntax

<f:phaseLi stener type="fully-qualified-classnane”

bi ndi ng="Val ue expression”/>

Body Content

empty.
Attributes
Name Expr Type Description
type VE String Fully qualified Java class name of an
PhaselLi st ener to be created and registered
bi nding VE Val ueEx A Val ueExpr essi on expression that
pressi o evaluates to an object that implements
n j avax. faces. event. PhaselLi st ener

Constraints

= [Pl-start fiphaseListener constraints] Must be nested inside a Ul Vi ewRoot custom action.
= The specified listener class must implement j avax. f aces. event . PhaselLi st ener.
= type and/or bi ndi ng must be specified. [P1-end]

Description

Locate the one and only Ul Vi ewRoot custom action instance by walking up the tag tree until you find a
Ul Conponent TagBase instance that has no parent. If the get Cr eat ed() method of this instance returns t r ue,
check the bi ndi ng attribute.

If bi ndi ng is set, call bi ndi ng. get Val ue() to obtain a reference to the PhaseLi st ener instance. If there is no
exception thrown, and bi ndi ng. get Val ue() returned a non-null object that implements

j avax. f aces. event . PhaselLi st ener, register it by calling addPhaseLi st ener (). If there was an exception
thrown, rethrow the exception as a JSpExcepti on.

If the listener instance could not be created, check the t ype attribute. If the t ype attribute is set, instantiate an
instance of the specified class, and register it by calling addPhaselLi st ener () . If the bi ndi ng attribute was also set,
store the listener instance by calling bi ndi ng. set Val ue() . If there was an exception thrown, rethrow the exception
as a JspExcepti on.

| 9-24 JavaServer Faces Specification « June 2009

9.4.10 <fselectltem>

Add a child Ul Sel ect | t emcomponent to the Ul Conponent associated with the closest parent Ul Conponent
custom action.

Syntax

Syntax 1: Directly Specified Value
<f:selectltem[id="conponent|dO | mredi at eExpr essi on”]
[bi ndi ng="conponent Ref erence”]
[itenDi sabl ed="{true|fal se}"]
i tenval ue="it enval ue”
i temLabel ="i t enlLabel ”
[itenmDescription="itenDescription”]/>

Syntax 2: Indirectly Specified Value
<f:selectltem[id="conponent|dO | nredi at eExpr essi on”]
[bi ndi ng=" conponent Ref er ence”]
val ue="sel ect | t emval ue”/ >

Body Content

empty

Chapter 9 Integration with JSSP ~ 9-25

Attributes

Name Expr Type Description
binding VE Val ueEx Val ueExpr essi on expression to a backing bean
pressi o property bound to the component instance for the
n UIComponent created by this custom action.
id NONE String Component identifier of a Ul Sel ect |t em
component.
itenDes VE String Description of this option (for use in development
criptio tools).
n
itemDisab VE boolean Flag indicating whether the option created by this
led component is disabled.
itemLabel VE String Label to be displayed to the user for this option.
itemValue VE Object Value to be returned to the server if this option is
selected by the user.
value VE javax.faces Value binding pointing at a Selectltem instance
.model.Sel containing the information for this option.
ectltem
escape VE boolean ValueExpression pointing to a boolean that tells

whether or not the label of this selectltem should
be escaped per HTML rules. Default is true.

Constraints

= [Pl-start fiselectltem constraints] Must be nested inside a Ul Conponent custom action that creates a

Ul Sel ect Many or Ul Sel ect One component instance.[P1-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Conmponent C assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create a new Ul Sel ect | t emcomponent, and attach it as a child of the

associated Ul Conponent .

[P1-start fiselectltem implementation] The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. U Conponent ELTag.
= The get Conponent Type() method must return “Sel ect | t ent’.
= The get Render er Type() method must return nul | .[P1-end]

9-26

JavaServer Faces Specification « June 2009

9.4.11

<f:selectltems>

Add a child Ul Sel ect | t ens component to the Ul Conponent associated with the closest parent Ul Conponent

custom action.

Syntax

<f:selectltenms [id="conmponent!dO | medi at eExpressi on”]

[bi ndi ng=" conponent Ref er ence”]

val ue="sel ect | t ensVal ue”/ >

Body Content

empty
Attributes
Name Expr Type Description
binding VE Val ueEx Val ueExpr essi on expression to a backing bean
pressi o property bound to the component instance for the
n UlComponent created by this custom action.
id NONE String Component identifier of a Ul Sel ect |t em
component.
val ue VE javax.faces Value binding expression pointing at one of the
.model.Sel following instances:
ectltem, 1. an individual javax.faces.model.Selectltem
Zee L 2. a java language array of
escrlpt.lon javax.faces.model.SelectItem
for specific . . .
- 3. a java.util.Collection of
details

javax.faces.model.Seleccltem

4. A java.util.Map where the keys are converted to
Strings and used as labels, and the
corresponding values are converted to Strings
and used as values for newly created
javax.faces.model.Selectltem instances. The
instances are created in the order of the iterator
over the keys provided by the Map.

Constraints

= Must be nested inside a U Conponent custom action that creates a Ul Sel ect Many or Ul Sel ect One component

instance.

Description

Locate the closest parent Ul Conponent custom action instance by calling
Ul Component Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create a new Ul Sel ect | t ens component, and attach it as a child of the

associated Ul Conrponent .

[P1-start f:selectltems implementation|The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. U Conponent ELTag.
= The get Conponent Type() method must return “j avax. f aces. Sel ect |t ens”.
= The get Render er Type() method must return nul | . [P1-end]

Chapter 9

Integration with JSP

9-27

9.4.12

<f:setPropertyActionListener>

Tag implementation that creates a special Act i onLi st ener instance and registers it on the Act i onSour ce
associated with our most immediate surrounding instance of a tag whose implementation class is a subclass of

Ul Conponent Tag. This tag creates no output to the page currently being created. This tag is useful for pushing a
specific value into a managed bean on page submit.

Syntax

<f:setPropertyActionListener target="Val ue Expression” val ue="val ue Expression”/>

Body Content

empty.
Attributes
Name Expr Type Description
val ue VE Val ueEx The Val ueExpr essi on from which the value is
pressi o taken.
n
tar get VE Val ueEx The Val ueExpr essi on into which the
pressi o evaluated value from the “val ue” attribute is
n stored when the listener executes.

Constraints

= Must be nested inside a Ul Conponent custom action.

= The corresponding Ul Conponent implementation class must implement Act i onSour ce, and therefore define a
public addAct i onLi st ener () method that accepts an Act i onLi st ener parameter.

= The tag implementation must only create and register the Act i onLi st ener instance the first time the component
for this tag is created

= When the listener executes:

« Call get Val ue() on the "val ue" Val ueExpr essi on.

« If value of the "value" expression is null, call set Val ue() on the "target" Val ueExpr essi on with the null
value.

« If the value of the "value" expression is not null, call get Type() on the "value" and "target"
Val ueExpr essi ons to determine their property types.

» Coerce the value of the "value" expression to the "target" expression value type following the Expression
Language coercion rules. Call set Val ue() on the "target" Val ueExpr essi on with the resulting value.

« If either conversion or the execution of setValue() fails throw an AbortProcessingException.
= This tag creates no output to the page currently being created. It is used solely for the side effect of
Acti onLi st ener creation and addition.

[P1-start f:setPropertyActionListener constraints]If this tag is not nested inside a Ul Conponent custom action, or the
Ul Conponent implementation class does not correctly implement Act i onSour ce, or the specified listener class does
not implement j avax. f aces. event. Acti onLi st ener, throw a JspExcepti on. [Pl-end]

Description
Locate the closest parent Ul Conponent custom action instance by calling

Ul Component Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue return SKI P_BODY.

| 9-28 JavaServer Faces Specification « June 2009

Create an instance of Act i onLi st ener that implements St at eHol der and stores the t ar get and val ue

Val ueExpr essi on instances as instance variables included in the state saving contract. The pr ocessActi on()
method of the listener must call get Val ue() on the val ue Val ueExpr essi on and convert the value before passing
the result to a call to set Val ue() on the t ar get Val ueExpr essi on.

Chapter 9 Integration with JSP 9-29

9.4.13

<f:subview>
Container action for all JSF core and component custom actions used on a nested page included via <j sp: i ncl ude>
or any custom action that dynamically includes another page from the same web application, such as JSTL’s

<c:inmport >,

Syntax

<f:subvi ew i d=" conponent | dOr | mredi at eExpr essi on”
[bi ndi ng="conponent Ref er ence”]
[rendered="{true|fal se}”]>

Nested tenplate text and custom actions
</ f:subvi ew>

Body Content

JSP. May contain any combination of template text, other JSF custom actions, and custom actions from other custom tag
libraries.

Attributes

Name Expr Type Description

binding VE Val ueEx Val ueExpr essi on expression to a backing
pressi 0 bean property bound to the component instance for
n the UIComponent created by this custom action.

id NONE String Component identifier ofa Ul Nam ngCont ai ner

component
rendere VE Boolean Whether or not this subview should be rendered.
d

Constraints

» [Pl-start f:subview constraints] Must be nested inside a <f : vi ew> custom action (although this custom action might
be in a page that is including the page containing the <f : subvi ew> custom action.

= Must not contain an <f ; vi ew> custom action.

= Must have an i d attribute whose value is unique within the scope of the parent naming container. If this constraint is
not met, the action taken regarding id uniqueness in section Section 9.3 “UlComponent Custom Action
Implementation Requirements” must be taken

= May be placed in a parent page (with <j sp: i ncl ude> or <c: i nmpor t > nested inside), or within the nested page.
[P1-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling
Ul Conponent O assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create a new Ul Nanmi ngCont ai ner component, and attach it as a child of the

| 9-30 JavaServer Faces Specification « June 2009

associated Ul Conmponent . Such a component provides a scope within which child component identifiers must still be
unique, but allows child components to have the same simple identifier as child components nested in some other naming

container. This is useful in several scenarios:

“main.jsp”

<f:vi ew>
<c:inport url="foo.jsp"/>
<c:inport url="bar.jsp"/>

</[f:view

“foo0.jsp”

<f:subvi ew i d="aaa” >

</ f:subvi ew>

13 bar . 'I S gﬂ
<f:subvi ew i d="bbb” >

</ f:subvi ew>

conponents and ot her content

conponents and ot her content

In this scenario, <f : Subvi ew> custom actions in imported pages establish a naming scope for components within those
pages. Identifiers for <f : subvi ew> custom actions nested in a single <f : vi ew> custom action must be unique, but it
is difficult for the page author (and impossible for the JSP page compiler) to enforce this restriction.

“main.jsp”
<f:view
<f:subvi ew i d="aaa” >
<c:inport url="foo.jsp"/>
</f:subvi ew>
<f:subvi ew i d="bbb" >
<c:inport url="bar.jsp"/>
</ f:subvi ew>
</f:view
“foo.jsp”
conponents and ot her content

“ bar . 'I s 1H
conponents and ot her content

In this scenario, the <f : subvi ew> custom actions are in the including page, rather than the included page. As in the
previous scenario, the “id” values of the two subviews must be unique; but it is much easier to verify using this style.

Chapter 9

Integration with JSP

9-31

It is also possible to use this approach to include the same page more than once, but maintain unique identifiers:

“main.jsp”
<f:view>
<f:subvi ew i d="aaa"” >
<c:inport url="foo.jsp"/>
</ f:subvi ew>
<f: subvi ew i d="bbb" >
<c:inmport url="foo.jsp"/>
</ f:subvi ew>
</f:view
“foo0.jsp”
conponents and ot her content

In all of the above examples, note that f 00. j Sp and bar . j Sp may not contain <f : vi ew>.

The implementation class for this action must meet the following requirements:

= [Pl-start f:subview implementation] Must extend j avax. f aces. Ul Conponent ELTag.
= The get Conponent Type() method must return “Nami ngCont ai ner”.
= The get Render er Type() method must return nul | . [P1-end]

| 9-32 JavaServer Faces Specification « June 2009

9.4.14

<f:validateDoubleRange>

Register a Doubl eRangeVal i dat or instance on the Ul Conponent associated with the closest parent
Ul Conponent custom action.

Syntax

Syntax 1: Maximum only specified
<f:val i dat eDoubl eRange maxi mum="543. 21" bi ndi ng="VB Expressi on”/>

Syntax 2: Minimum only specified
<f:val i dat eDoubl eRange mi ni mum="123. 45" bi ndi ng="VB Expressi on”/>

Syntax 3: Both maximum and minimum are specified
<f:val i dat eDoubl eRange maxi mum="543. 21" mi ni mum="123. 45" bi ndi ng="VB Expression”/>

Body Content

empty.
Attributes
Name Expr Type Description
maxi mum VE doubl e Maximum value allowed for this component
m ni mum VE doubl e Minimum value allowed for this component
bi nding VE Val ueEx A Val ueExpressi on expression that
pressi o evaluates to an object that implements
n j avax. faces. convert. Val i dat or

Constraints

= Must be nested inside a Edi t abl eVal ueHol der custom action whose value is (or is convertible to) a double.
= Must specify either the maxi mumattribute, the m ni mumattribute, or both.
= [f both limits are specified, the maximum limit must be greater than the minimum limit.

[P1-start f:validateDoubleRange constraints] If this tag is not nested inside a Ul Conponent custom action, or the
Ul Conmponent implementation class does not correctly implement Edi t abl eVal ueHol der throw a
JspException. [Pl-end]

Description

Locate the closest parent U Conponent custom action instance by calling

Ul Conponent C assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create, call cr eat eVal i dat or () and register the returned Val i dat or
instance on the associated U Conponent .

[P1-start fivalidateDoubleRange implementation] The implementation class for this action must meet the following
requirements:

= Must extend j avax. f aces. webapp. Val i dat or ELTag.
= The createVal i dat or () method must:

Chapter 9 Integration with JSSP 9-33

« Ifbi ndi ng is non-null, create a Val ueBi ndi ng by invoking Appl i cati on. cr eat eVal ueExpr essi on() with
bi ndi ng as the expr essi on argument, and Val i dat or. cl ass as the expect edType argument.use the
Val ueBi ndi ng to obtain a reference to the Val i dat or instance. If there is no exception thrown, and
Val ueExpr essi on. get Val ue() returned a non-null object that implements
javax. faces. val i dat or. Val i dat or, it must then cast the returned instance to
javax. faces. val i dat or. Doubl eRangeVal i dat or and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception thrown, rethrow the
exception as a JSpExcepti on.
= use the val i dat or | d if the validator instance could not be created from the bi ndi ng attribute. Call the
creat eVal i dat or () method of the Appl i cat i on instance for this application, passing validator id
“javax.faces.DoubleRange”. If the bi ndi ng attribute was also set, evaluate the expression into a
Val ueExpr essi on and store the validator instance by calling set Val ue() on the Val ueExpr essi on. It must
then cast the returned instance to j avax. f aces. val i dat or . Doubl eRangeVal i dat or and configure its
properties based on the specified attributes for this custom action, and return the configured instance. If there was an
exception thrown, rethrow the exception as a JSpExcept i on. [P1-end]

| 9-34 JavaServer Faces Specification « June 2009

9.4.15

<f:validateDoubleRange>

Register a Doubl eRangeVal i dat or instance on the Ul Conponent associated with the closest parent
Ul Conponent custom action.

Syntax

Syntax 1: Maximum only specified
<f:val i dat eDoubl eRange maxi mum="543. 21" bi ndi ng="VB Expressi on”/>

Syntax 2: Minimum only specified
<f:val i dat eDoubl eRange mi ni mum="123. 45" bi ndi ng="VB Expressi on”/>

Syntax 3: Both maximum and minimum are specified
<f:val i dat eDoubl eRange maxi mum="543. 21" mi ni mum="123. 45" bi ndi ng="VB Expression”/>

Body Content

empty.
Attributes
Name Expr Type Description
maxi mum VE doubl e Maximum value allowed for this component
m ni mum VE doubl e Minimum value allowed for this component
bi nding VE Val ueEx A Val ueExpressi on expression that
pressi o evaluates to an object that implements
n j avax. faces. convert. Val i dat or

Constraints

= Must be nested inside a Edi t abl eVal ueHol der custom action whose value is (or is convertible to) a double.
= Must specify either the maxi mumattribute, the m ni mumattribute, or both.
= [f both limits are specified, the maximum limit must be greater than the minimum limit.

[P1-start f:validateDoubleRange constraints] If this tag is not nested inside a Ul Conponent custom action, or the
Ul Conmponent implementation class does not correctly implement Edi t abl eVal ueHol der throw a
JspException. [Pl-end]

Description

Locate the closest parent U Conponent custom action instance by calling

Ul Conponent C assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create, call cr eat eVal i dat or () and register the returned Val i dat or
instance on the associated U Conponent .

[P1-start fivalidateDoubleRange implementation] The implementation class for this action must meet the following
requirements:

= Must extend j avax. f aces. webapp. Val i dat or ELTag.
= The createVal i dat or () method must:

Chapter 9 Integration with JSSP 9-35

If bi ndi ng is non-null, create a Val ueBi ndi ng by invoking Appl i cati on. cr eat eVal ueExpr essi on() with
bi ndi ng as the expr essi on argument, and Val i dat or. cl ass as the expect edType argument.use the

Val ueBi ndi ng to obtain a reference to the Val i dat or instance. If there is no exception thrown, and

Val ueExpr essi on. get Val ue() returned a non-null object that implements

javax. faces. val i dat or. Val i dat or, it must then cast the returned instance to

javax. faces. val i dat or. Doubl eRangeVal i dat or and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception thrown, rethrow the
exception as a JSpExcepti on.

use the val i dat or | d if the validator instance could not be created from the bi ndi ng attribute. Call the
creat eVal i dat or () method of the Appl i cat i on instance for this application, passing validator id
“javax.faces.DoubleRange”. If the bi ndi ng attribute was also set, evaluate the expression into a

Val ueExpr essi on and store the validator instance by calling set Val ue() on the Val ueExpr essi on. It
must then cast the returned instance to j avax. f aces. val i dat or . Doubl eRangeVal i dat or and configure
its properties based on the specified attributes for this custom action, and return the configured instance. If there
was an exception thrown, rethrow the exception as a JSpExcept i on. [Pl-end]

9-36 JavaServer Faces Specification * June 2009

9.4.16

<f:validateRegex>

Register a RegexVal i dat or instance on the Ul Conponent associated with the closest parent Ul Conponent
custom action.

Syntax

<f:val i dat eRegex pattern="a*b”/>

Body Content

empty.

Attributes

Name Expr Type Description

pattern VE String The string to be interpreted as a

java.util.regex. Pattern

bi nding VE Val ueEx A Val ueExpressi on expression that
pressi o evaluates to an object that implements
n j avax. faces. convert. Val i dat or

Constraints

= Must be nested inside a Edi t abl eVal ueHol der custom action whose value is a St ri ng.
= Must specify either the pat t er n attribute.

[P1-start f:validateLength constraints] If this tag is not nested inside a Ul Conponent custom action, or the
Ul Corrponent implementation class does not correctly implement Edi t abl eVal ueHol der, throw a
JspExcepti on. [Pl-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Conmponent C assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create, call cr eat eVal i dat or () and register the returned Val i dat or
instance on the associated Ul Conponent .

[P1-start f:validateLength implementation] The implementation class for this action must meet the following
requirements:

= Must extend j avax. f aces. webapp. Val i dat or ELTag.
= The createVal i dat or () method must:

« If bi ndi ng is non-null, create a Val ueExpr essi on by invoking Appl i cati on. cr eat eVal ueExpr essi on()
with bi ndi ng as the expr essi on argument, and Val i dat or. cl ass as the expect edType argument.use the
Val ueExpr essi on to obtain a reference to the Val i dat or instance. If there is no exception thrown, and
Val ueExpr essi on. get Val ue() returned a non-null object that implements
javax. f aces. val i dat or. Val i dat or, it must then cast the returned instance to
javax. faces. val i dat or. RegexVal i dat or and configure its properties based on the specified attributes
for this custom action, and return the configured instance. If there was an exception thrown, rethrow the exception
as a JspExcepti on.

« use the val i dat or | d if the validator instance could not be created from the bi ndi ng attribute. Call the
creat eVal i dat or () method of the Appl i cat i on instance for this application, passing validator id
“javax.faces.RegularExpression”. If the bi ndi ng attribute was also set, evaluate the expression into a
Val ueExpr essi on and store the validator instance by calling set Val ue() on the Val ueExpr essi on. It
must then cast the returned instance to j avax. f aces. val i dat or. RegexVal i dat or and configure its
properties based on the specified attributes for this custom action, and return the configured instance. If there was
an exception thrown, rethrow the exception as a JspExcepti on.[Pl-end]

Chapter 9 Integration with JSP ~ 9-37

9.4.17

<f:validateLongRange>

Register a LongRangeVal i dat or instance on the Ul Conponent associated with the closest parent U Conponent
custom action.

Syntax

Syntax 1: Maximum only specified

<f:val i dat eLongRange nmaxi munm="543" bi ndi ng="VB Expression”/>

Syntax 2: Minimum only specified

<f:val i dat eLongRange m ni num="123" bi ndi ng="VB Expression”/>

Syntax 3: Both maximum and minimum are specified

<f:val i dat eLongRange nmaxi munm="543" mi ni num="123" bi ndi ng="VB Expression”’/>

Body Content

empty.
Attributes
Name Expr Type Description
maxi mum VE | ong Maximum value allowed for this component
m ni mum VE | ong Minimum value allowed for this component
bi nding VE Val ueEx A Val ueExpressi on expression that
pressi o evaluates to an object that implements
n j avax. faces. convert. Val i dat or

Constraints

= Must be nested inside a Edi t abl eVal ueHol der custom action whose value is (or is convertible to) a long.
= Must specify either the maxi mumattribute, the m ni mumattribute, or both.
= [f both limits are specified, the maximum limit must be greater than the minimum limit.

[P1-start f:validateLongeRange constraints] If this tag is not nested inside a Ul Conponent custom action, or the
Ul Conmponent implementation class does not correctly implement Edi t abl eVal ueHol der, throw a
JspException. [Pl-end]

Description

Locate the closest parent U Conponent custom action instance by calling

Ul Conponent C assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create, call cr eat eVal i dat or () and register the returned Val i dat or
instance on the associated U Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Val i dat or ELTag.
= The cr eat eVal i dat or () method must:

| 9-38 JavaServer Faces Specification « June 2009

If bi ndi ng is non-null, create a Val ueExpr essi on by invoking Appl i cati on. cr eat eVal ueExpr essi on()
with bi ndi ng as the expr essi on argument, and Val i dat or. cl ass as the expect edType argument. Use the
Val ueExpr essi on to obtain a reference to the Val i dat or instance. If there is no exception thrown, and

Val ueExpr essi on. get Val ue() returned a non-null object that implements

javax. faces. val i dat or. Val i dat or, it must then cast the returned instance to

javax. faces. val i dat or. LongRangeVal i dat or and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception thrown, rethrow the
exception as a JSpExcepti on.

use the val i dat or | d if the validator instance could not be created from the bi ndi ng attribute. Call the
creat eVal i dat or () method of the Appl i cat i on instance for this application, passing validator id
“javax.faces.LongRange”. If the bi ndi ng attribute was also set, evaluate the expression into a

Val ueExpr essi on and store the validator instance by calling set Val ue() on the Val ueExpr essi on. It
must then cast the returned instance to j avax. f aces. val i dat or. LongRangeVal i dat or and configure its
properties based on the specified attributes for this custom action, and return the configured instance. If there was
an exception thrown, rethrow the exception as a JSpExcepti on.

Chapter 9 Integration with JSSP 9-39

9.4.18

<f:validator>

Register a named Val i dat or instance on the Ul Conponent associated with the closest parent U Conponent
custom action.

Syntax

<f:validator validatorld="validatorld” binding="VB Expression”/>

Body Content

empty

Attributes

Name Expr Type Description

validat VE String Validator identifier of the validator to be created.

orld

bi nding VE Val ueEx A Val ueExpressi on expression that
pressi o evaluates to an object that implements
n j avax. faces. convert. Val i dat or

Constraints

= Must be nested inside a Ul Conponent custom action whose component class implements
Edi t abl eVal ueHol der.

= validatorld and/or bi ndi ng must be specified.

[P1-start f:validator constraints 2] If this tag is not nested inside a Ul Conponent custom action, or the Ul Conponent
implementation class does not correctly implement Edi t abl eVal ueHol der throw a JspExcepti on. [Pl-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Conponent Cl assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, create, call cr eat eVal i dat or () and register the returned Val i dat or
instance on the associated Ul Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Val i dat or JspTag.
= The creat eVal i dat or () method must:

« Ifbi ndi ng is non-null, call bi ndi ng. get Val ue() to obtain a reference to the Val i dat or instance. If there
is no exception thrown, and bi ndi ng. get Val ue() returned a non-null object that implements
j avax. faces. val i dat or. Val i dat or, register it by calling addVal i dat or () . If there was an exception
thrown, rethrow the exception as a JSpExcepti on.

« use the val i dat orl d attribute if the validator instance could not be created from the bi ndi ng attribute. If
the val i dat or | d attribute is set, call the cr eat eVal i dat or () method of the Appl i cat i on instance for
this application, passing validator id specified by their validatorld attribute. If the bi ndi ng attribute was also set,
store the validator instance by calling bi ndi ng. set Val ue() . Register the validator instance by calling
addVal i dat or (). If there was an exception thrown, rethrow the exception as a JSpExcept i on.

| 9-40 JavaServer Faces Specification « June 2009

9.4.19

<f:valueChangeListener>

Register a Val ueChangeli st ener instance on the Ul Conponent associated with the closest parent U Conponent
custom action.

Syntax

<f:val ueChangelLi st ener type="fully-qualified-classnanme” bindi ng="VB Expression”/>

Body Content

empty.
Attributes
Name Expr Type Description
type VE String Fully qualified Java class name of a
Val ueChangeli st ener to be created and
registered
bi nding VE Val ueEx A Val ueExpressi on expression that
pressi o evaluates to an object that implements
n j avax. f aces. event . Val ueChangelLi st en
er

Constraints

= Must be nested inside a Ul Conponent custom action.

= The corresponding Ul Conponent implementation class must implement Edi t abl eVal ueHol der, and therefore
define a public addVal ueChangelLi st ener () method that accepts an Val ueChangeli st ener parameter.

= The specified listener class must implement j avax. f aces. event . Val ueChangeli st ener.

= type and/or bi ndi ng must be specified.

[P1-start f:valueChangeListener constraints] If this tag is not nested inside a Ul Conponent custom action, or the
Ul Conmponent implementation class does not correctly implement Edi t abl eVal ueHol der, or the specified listener
class does not implement j avax. f aces. event . Val ueChangelLi st ener, throw a JspExcepti on. [Pl-end]

Description

Locate the closest parent Ul Conponent custom action instance by calling
Ul Conponent C assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, check the bi ndi ng attribute.

If binding is non-null, call bi ndi ng. get Val ue() to obtain a reference to the Val ueChangelLi st ener instance. If
there is no exception thrown, and Val ueExpr essi on. get Val ue() returned a non-null object that implements

j avax. f aces. event . Val ueChangelLi st ener, register it by calling addVal ueChangelLi st ener (). If there was
an exception thrown, rethrow the exception as a JsSpExcepti on.

If the listener instance could not be created, check the t ype attribute. If the t ype attribute is set, instantiate an
instance of the specified class, and register it by calling addVal ueChangelLi st ener () . If the bi ndi ng attribute was
also set, store the listener instance by calling bi ndi ng. set Val ue() . If there was an exception thrown, rethrow the
exception as a JSpExcepti on.

As an alternative to using the bi ndi ng and/or t ype attributes, you may also register a method in a backing bean class
to receive Val ueChangeEvent notifications, by using the val ueChangelLi st ener attribute on the corresponding
Ul Conponent custom action.instantiate an instance of the specified class, and register it by calling

addVal ueChangelLi st ener ().

Chapter 9 Integration with JSP 9-41

9.4.20 <f:verbatim>

Register a child Ul Qut put instance on the Ul Conponent associated with the closest parent Ul Conponent custom
action which renders nested body content.

Syntax

<f:verbatim[escape="{true|fal se}” rendered="{true|fal se"]/>

Body Content

JSP. However, no UIComponent custom actions, or custom actions from the JSF Core Tag Library, may be nested inside
this custom action.

Attributes

Name Expr Type Description

escape VE bool ean Iftrue, generated markup is escaped in a manner
appropriate for the markup language being
rendered. Default value is false.

rendere VE bool ean Flag indicating whether or not this component

d should be rendered (during Render Response

Phase), or processed on any subsequent form
submit. Default value is true.

Constraints

» [Pl-start fiverbatim constraints] Must be implemented as a Ul Conmponent Body Tag.[P1-end]
Description

Locate the closest parent U Conponent custom action instance by calling

Ul Conponent C assi cTagBase. get Par ent Ul Conponent Cl assi cTagBase() . If the get Cr eat ed()
method of this instance returns t r ue, creates a new Ul Qut put component, and add it as a child of the Ul Conponent
associated with the located instance. The r ender er Type property of this Ul Qut put component must be set to
“javax.faces.Text”, and the t r ansi ent property must be set to t r ue. Also, the value (or value binding, if it is an
expression) of the escape attribute must be passed on to the renderer as the value the escape attribute on the

Ul Qut put component.

| 9-42 JavaServer Faces Specification * June 2009

9.4.21

<f:view>
Container for all JSF core and component custom actions used on a page.

Syntax

<f:view [l ocale="1 ocale” renderKitld="alternate”]
[bef or ePhase="net hodExpr essi on”]
[af t er Phase” met hodExpressi on”] >
Nested tenpl ate text and custom actions
</f:view>

Body Content

JSP. May contain any combination of template text, other JSF custom actions, and custom actions from other custom tag
libraries.

Attributes
Name Expr Type Description
renderKitld VE String The identifier for the render kit to use for
rendering this page.
| ocal e VE String Name of a Locale to use for localizing this page
or (such as en_uk), or value binding expression that
Local e returns a Local e instance
bef or ePhase ME String Met hodExpr essi on expression that points to a
method whose signature is that of
javax.faces.event.PhaselLi st ener . bef or ePha
se()
af t er Phase ME String Met hodExpr essi on expression that points to a

method whose signature is that of
javax.faces.event.Phaseli st ener. af t er Phas

e()

Constraints

= [Pl-start f:iview constraints] Any JSP-created response using actions from the JSF Core Tag Library, as well as actions
extending j avax. f aces. webapp. Ul Conrponent ELTag from other tag libraries, must be nested inside an
occurrence of the <f : vi ew> action.

= JSP page fragments included via the standard <%@ i ncl ude 9% directive need not have their JSF actions
embedded in a <f : vi ew> action, because the included template text and custom actions will be processed as part of
the outer page as it is compiled, and the <f : vi ew> action on the outer page will meet the nesting requirement.

= Ifthe renderKitld attribute is present, its value is stored in Ul Vi ewRoot . Ifthe renderKitld attribute is
not present, then the default render kit identifier as returned by Appl i cat i on. get Def aul t Render Ki t 1 d() is
stored in Ul Vi ewRoot if it is not nul | . Otherwise, the render kit identifier as specified by the constant
Render Ki t Fact ory. HTML_BASI C_RENDER KI T is stored in Ul Vi ewRoot . Specifying a renderKi t | d
for the current view also affects all subsequent views, unless overridden by another use of the renderKitld
attribute. Please refer to Section 7.5 “ViewHandler” for more information.

= If the | ocal e attribute is present, its value overrides the Local e stored in Ul Vi ewRoot , normally set by the
Vi ewHandl er, and the doStartTag() nethod nust store it by calling
Ul Vi ewRoot . set Local e() .

Chapter 9 Integration with JSSP ~ 9-43

= The doSt art Tag() method must call j avax. servlet.jsp.jstl.core.Config.set(), passing the
Ser vl et Request instance for this request, the constant
javax.servlet.jsp.jstl.core.Config. FMI_LOCALE, and the Local e returned by calling
Ul Vi ewRoot . get Local e() . [Pl-end]

Description

Provides the JSF implementation a convenient place to perform state saving during the render response phase of the
request processing lifecycle, if the implementation elects to save state as part of the response.

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. U Conponent ELTag.

= The get Conponent Type() method must return “ViewRoot”.

= The get Render er Type() method must return nul | .

Please refer to the javadocs for j avax. f aces. appl i cati on. St at eManager for details on what the tag handler
for this tag must do to implement state saving.

| 9-44 JavaServer Faces Specification * June 2009

9.5

Standard HTML RenderKit Tag Library

All JSF implementations must provide a tag library containing actions that correspond to each valid combination of a
supported component class (see Chapter 4 “Standard User Interface Components”) and a Render er from the Standard

HTML RenderKit (see Section 8.6 “Standard HTML RenderKit Implementation) that supports that component type.

[P1-start html basic taglib requirements] The tag library descriptor for this tag library must meet the following

requirements:

= Must declare a tag library version (<t | i b- ver si on>) value of 1. 2.
= Must declare a URI (<uri >) value of htt p: //j ava. sun. com j sf/htmi .

= Must be included in the META- | NF directory of a JAR file containing the corresponding implementation classes,

suitable for inclusion with a web application, such that the tag library descriptor will be located automatically by the
algorithm described in Section 7.3 of the JavaServer Pages Specification (version 1.2).[P1-end]

[P1-start html basic return values]The custom actions defined in this tag library must specify the following return values
for the get Conponent Type() and get Render er Type() methods, respectively:.

TABLE9-2 Standard HTML RenderKit Tag Library

getComponentType() getRendererType() custom action name
javax.faces.Column (null)* column
javax.faces.HtmlCommand javax.faces.Button commandButton

Button

javax.faces.HtmlCommand
Link

javax.faces.HtmlDataTable
javax.faces.HtmlForm

javax.faces.HtmlGraphiclm
age

javax.faces.HtmlInputHidd
en

javax.faces.HtmlInputSecre
t

javax.faces.HtmlInputText

javax.faces.HtmlInputTexta
rea

javax.faces.HtmIMessage
javax.faces.HtmIMessages

javax.faces.HtmlOutputFor
mat

javax.faces.HtmlOutputLab
el

javax.faces.HtmlOutputLin
k

javax.faces.Output
javax.faces.Output

javax.faces.Output

javax.faces.Link

javax.faces.Table
javax.faces.Form

javax.faces.Image

javax.faces.Hidden

javax.faces.Secret

javax.faces.Text

javax.faces.Textarea

javax.faces.Message
javax.faces.Messages

javax.faces.Format

javax.faces.Label

javax.faces.Link

javax.faces.Body
javax.faces.Head

javax.faces.resource.Script

commandLink

dataTable
form

graphiclmage

inputHidden

inputSecret

inputText

inputTextarea

message
messages

outputFormat

outputLabel

outputLink

body
head

outputScript

Chapter 9

Integration with JSP

9-45

TABLE9-2 Standard HTML RenderKit Tag Library

getComponentType() getRendererType() custom action name

javax.faces.Output javax.faces.resource.Styles outputStylesheet
heet

javax.faces.HtmlOutputTex javax.faces.Text outputText

t

javax.faces.HtmlPanelGrid javax.faces.Grid panelGrid

javax.faces.HtmlPanelGrou javax.faces.Group panelGroup

p

javax.faces.HtmlSelectBool
eanCheckbox

javax.faces.Checkbox

selectBooleanCheckbox

javax.faces.HtmlSelectMan javax.faces.Checkbox selectManyCheckbox
yCheckbox

javax.faces.HtmlSelectMan javax.faces.Listbox selectManyListbox
yListbox

javax.faces.HtmlSelectMan javax.faces.Menu selectManyMenu
yMenu

javax.faces.HtmlSelectOne javax.faces.Listbox selectOneListbox
Listbox

javax.faces.HtmlSelectOne javax.faces.Menu selectOneMenu
Menu

javax.faces.HtmlSelectOne javax.faces.Radio selectOneRadio

Radio

* This component has no associated Renderer, so the getRendererType() method must return null instead of a

renderer type.

[P1-end] [P1-start html basic taglibrary requirements 2]The tag library descriptor for this tag library (and the
corresponding tag handler implementation classes) must meet the following requirements:

= The attributes for the tags, both in the TLD and in the associated tag handlers, must conform exactly to the type,
name, and description given in the TLDDocs for the html basic tag library.

= If the type of the attribute is j avax. el . Val ueExpr essi on, the TLD for the attribute must contain a
<def er r ed- val ue> with a nested <t ype> element, inside of which is nested the expected type, as given in the
TLDDocs. The JavaBeans setter method in the tag handler for the tag must be of type
j avax. el . Val ueExpr essi on.

= If the type of the attribute is j avax. el . Met hodExpr essi on, the TLD for the attribute must contain a
<def er r ed- met hod> with a nested <nmet hod- si gnat ur e>, inside of which is the method signature for that
Met hodExpr essi on, as given in the TLDDocs. The actual name of the method in the signature declaration is
immaterial and unspecified. The JavaBeans setter method in the tag handler for the tag must be of type
j avax. el . Met hodExpr essi on.

Any attributes listed in the TLDDocs with a r equest - t i ne value of t r ue must specify an <rt expr val ue> of
true in the TLD.

The following action must be taken to handle the value of the convert er property. If i sLi t eral Text () on the
convert er property returns t r ue, get the value of the property and treat it as a convert er | d by passing it as the
argument to the cr eat eConvert er () method of the Appl i cat i on instance for this webapp, then pass the
created Convert er to the set Convert er () method of the component for this tag. Ifi sLi t er al Text () on the
convert er property returns f al se, call set Val ueExpr essi on() on the component, passing “converter” as the
name of the Val ueExpr essi on and the Val ueExpr essi on instance as the value.

For a non-nul | act i on attribute on custom actions related to Act i onSour ce2 components (commandBut t on,
conmandLi nk), the set Properti es() method of the tag handler implementation class must pass the value of the
action attribute, which is a Met hodExpr essi on, to the component’s set Act i onExpr essi on() method.

| 9-46 JavaServer Faces Specification « June 2009

For other non-nul | attributes that correspond to Met hodExpr essi on attributes on the underlying components
(actionLi stener,val i dat or,val ueChangelLi st ener), the set Properti es() method of the tag handler
implementation class must store that instance as the value of the corresponding component property.

For any non-nul | i d, scope, or var attribute, the set Properti es() method of the tag handler implementation
class must simply set the value of the corresponding component attribute.

For all other non-nul | attributes, the set Properti es() of the tag handler implementation class method must:

« Iftheattribute.isLiteral Text() returnstrue, set the corresponding attribute on the underlying
component (after performing any necessary type conversion).

» Otherwise, call the set Val ueExpr essi on() method on the underlying component, passing the attribute name
and the Val ueExpr essi on‘ instance as parameters.[P1-end]

Chapter 9 Integration with JSP 9-47

9-48 JavaServer Faces Specification + June 2009

10

Facelets and its use in Web Applications

As of version 2 of this specification, JavaServer Faces implementations must support (although JSF-based applications
need not utilize) using Facelets as the view declaration language for JSF pages. Facelets technology was created by JSR-
252 EG Member Jacob Hookom.

10.1

10.1.1

Non-normative Background

To aid implementors in providing a spec compliant runtime for Facelets, this section provides a non-normative
background to motivate the discussion of the Facelets feature. Facelets is a replacement for JSP that was designed from
the outset with JSF in mind. New features introduced in version 2 and later are only exposed to page authors using
Facelets. JSP is retained for backwards compatibility.

Differences between JSP and Facelets

Facelets was the first non-JSP view declaration language designed for JavaServer Faces. As such, Facelets was able to
provide a simpler and more powerful programming model to JSF developers than that provided by JSP, largely by
leveraging JSF as much as possible without carrying backwards compatibility with JSP. The following table lists some of
the differences between Facelets and JSP

TABLE 10-1 Comparison of Facelets and JSP

Feature Name JSP Facelets
Pages are A Servlet that gets executed each An abstract syntax tree that, when
compiled to... time the page renders. The executed, builds a UIComponent

UIComponent hierarchy is built by hierarchy.
the presence of custom tags in the

page.

Handling of tag All tag attributes must be declared in ~ Tag attributes are completely dynamic

attributes a TLD file. Conformance instances of and automatically map to properties,
components in a page with the attributes and ValueExpressions on
expected attributes can be enforced UIComponent instances

with a taglibrary validator.

Page templating ~ Not supported, must go outside of Page templating is a core feature of
core JSP Facelets

Chapter 10 Facelets and its use in Web Applications 10-1

10.1.2

TABLE 10-1 Comparison of Facelets and JSP

Feature Name JSP Facelets

Performance Due to the common implementation Facelets is simpler and faster than
technique of compiling a JSP page to JSP
a Servlet, performance can be slow

EL Expressions Expressions in template text cause Expressions in template text operate
unexpected behavior when used in as expected.
ISP

JCP Standard Yes, the specification is separate from No, the specification is defined by
the implementation for JSP and is one with the implementation.

Differences between Pre JSF 2.0 Facelets and Facelets in JSF 2.0

The work of taking a snapshot of a version of Facelets and producing the specification for Facelets in JSF 2.0 consists of
extracting the parts of Facelets that are intended to be “public” and leaving the rest as implementation details. A decision
was made early in this process to strive for backwards compatibility between the latest popular version of Facelets and
Facelets in JSF 2.0. The sole determinant to backwards compatibility lies in the answer to the question, “is there any Java
code in the application, or in libraries used by the application, that extends from or depends on any class in package
com sun. f acel et s and/or its sub-packages?”

= If the answer to this question is “yes”, Facelets in JSF 2.0 is not backwards compatibile with Facelets and such an
application must continue to bundle the Facelets jar file along with the application, continue to set the Facelets
configuration parameters, and also set the j avax. f aces. DI SABLE_FACELET_JSF_VI EWHANDLER
<cont ext - par an® to t r ue. Please see Section 11.1.3 “Application Configuration Parameters” for details on this
option. Any code that extends or depends on any class in package com sun. f acel et s and/or its sub-packages
must be modified to depend on the appropriate classes in package j avax. f aces. webapp. vdl and/or its sub-
packages.

= [f the answer to this question is “no”, Facelets in JSF 2.0 is backwards compatible with pre-JSF 2.0 Facelets and such
an application must not continue to bundle the Facelets jar file along with the application, and must not continue to set
the Facelets configuration parameters.

Thankfully, most applications that use Facelets fall into the latter category, or, if they fall in the former, their dependence
will easily be migrated to the new public classes.

Facelets in JSF 2.0 provides tag libraries that are compatible with the following libraries already found in pre JSF 2.0
Facelets.

TABLE 10-2 Taglibs in pre JSF 2.0 Facelets that are available in Facelets in JSF 2.0

Common prefix Namespace URI

h http://java.sun.com/jst/html

f http://java.sun.com/jsf/core

c http://java.sun.com/jsp/jstl/core

fn http://java.sun.com/jsp/jstl/functions
ui http://java.sun.com/jsf/facelets

Naturally, new features built on Facelets in JSF 2.0 are not available in pre JSF 2.0 Facelets and will only work in JSF
2.0 or later.

| 10-2 JavaServer Faces Specification « June 2009

10.2

10.2.1

Java Programming Language Specification for Facelets in
JSF 2.0

The subsections within this section specify the Java API requirements of a Facelets implementation. Adherence to this
section and the next section, which specifies the XHTML specification for Facelets in JSF 2.0, will ensure applications
and JSF component libraries that make use of Facelets are portable across different implementations of JavaServer Faces.

The original Facelet project did not separate the API and the implementation into separate jars, as is common practice
with JCP specifications. Thus, a significant task for integrating Facelets into JSF 2 was deciding which classes to include
in the public Java API, and which to keep as an implementation detail.

There were two guiding principles that influenced the task of integrating Facelets into JSF 2.

= The original decision in JSF 1.0 to allow the ViewHandler to be pluggable enabled the concept of a View Declaration
Language for JSF. The two most popular ones were Facelets and JSFTemplating. The new integration should preserve
this pluggability, since it is still valuable to be able to replace the View Declaration Language.

= After polling users of Facelets, the expert group decided that most of them were only using the markup based API and
were not extending from the Java classes provided by the Facelet project. Therefore, we decided to keep the Java API
for Facelets in JSF 2 as small as possible, only exposing classes where absolutely necessary.

The application of these principles produced the classes in the package j avax. f aces. vi ew. f acel et s. Please
consult the Javadocs for that package, and the classes within it, for additional normative specification.

Specification of the ViewDeclarationLanguage Implementation for
Facelets for JSF 2.0

As normatively specified in the javadocs for

Vi ewDecl ar at i onLanguageFact ory. get Vi ewDecl ar ati onLanguage(), a JSF implementation must
guarantee that a valid and functional Vi ewDecl ar at i onLanguage instance is returned from this method when the
argument is a refrence to either a JSP view or a Facelets View. This section describes the specification for the Facelets
implementation.

public void buil dVi em(FacesCont ext cont ext,
Ul Vi ewRoot root)
throws | OException

The argument r oot will have been created with a call to either cr eat eVi ew() or

Vi ewMet adat a. cr eat eMet adat aVi ew() . If the root already has non-metadata children, this method must return
immediately. Otherwise, the implementation must examine the vi ew d of the argument root, which must resolve to an
entity written in Facelets for JSF 2 markup language. Because Facelets for JSF 2.0 views are written in XHTML, an
XML parser is well suited to the task of processing such an entity. Each element in the XHTML view falls into one of
the following categories, each of which corresponds to an instance of a Java object that implements

javax. faces. vi ew. facel et s. Facel et Handl er, or a subinterface or subclass thereof, and an instance of

j avax. faces. vi ew. facel et s. TagConfi g, or a subinterface or subclass thereof, which is passed to the
constructor of the object implementing Facel et Handl er.

The mapping between the categories of elements in the XHTML view and the appropriate subinterface or subclass of
Facel et Handl er is specified below. Each Facel et Handl er instance must be traversed and its appl y() method
called in the same depth-first order as in the other lifecycle phase methods in jsf. Each Facel et Handl er instance
must use the get Next Handl er () method of the TagConf i g instance passed to its constuctor to perform the
traversal starting from the root Facel et Handl er.

Chapter 10 Facelets and its use in Web Applications 10-3

10.3

10.3.1

10.3.2

Standard XHTML markup elements

These are declared in the XHTML namespace ht t p: / / www. w3. or g/ 1999/ xht m . Such elements should be
passed through as is to the rendered output.

These elements correspond to instances of j avax. f aces. vi ew. f acel et s. Text Handl er. See the javadocs for
that class for the normative specification.

Markup elements that represent Ul Conponent instance in the view.

These elements can come from the Standard HTML Renderkit namespace ht t p: //j ava. sun. coni j sf/ htnl,
or from the namespace of a custom tag library (including composite components) as described in Section 10.3.2
“Facelet Tag Library mechanism”.

These elements correspond to instances of j avax. f aces. vi ew. f acel et s. Conponent Handl er. See the
javadocs for that class for the normative specification.

Markup elements that take action on their parent or children markup element(s). Usually these come from the JSF
Core namespace htt p: //j ava. sun. coni j sf/ cor e, but they can also be provided by a custom tag library.

Such elements that represent an attached object must correspond to an appropriate subclass of
javax. faces.view facel ets. Facel et sAtt achedObj ect Handl er. The supported subclasses are
specified in the javadocs.

Such elements that represent a facet component must correspond to an instance of
j avax. f aces. conponent . Facet Handl er.

Such elements that represent an attribute that must be pushed into the parent Ul Conponent element must
correspond to an instance of j avax. f acel et s. vi ew. facel ets. Attri but eHandl er.

Markup Elements that indicate facelet templating, as specified in the VDL Docs for the namespace
http://java. sun.conijsf/facel ets.

Such elements correspond to an instance of j avax. f aces. vi ew. f acel et s. TagHandl er.

Markup elements from the Facelet version of the JSTL namespaces htt p: //j ava. sun. com j sp/j stl/core
orhttp://java. sun.com jsp/jstl/functions, as specified in the VDL Docs for those namespaces.

Such elements correspond to an instance of j avax. f aces. vi ew. f acel et s. TagHandl er.

XHTML Specification for Facelets for JSF 2.0

General Requirements

[P1-start facelet xhtml]Facelet pages are authored in XHTML. The runtime must support all XHTML pages that
confirm with the XHTML-1.0-Transitional DTD, as described at
http://ww. w3. org/ TR/ xht ml 1/ #a_dt d_XHTM.- 1. O- Tr ansi ti onal .[P1-end facelet xhtml]

Facelet Tag Library mechanism

Facelets leverages the XML namespace mechanism to support the concept of a “tag library” analogous to the same
concept in JSP. However, in Facelets, the role of the tag handler java class is greatly reduced and in most cases is
unnecessary. The tag library mechanism has two purposes.

Allow page authors to access tags declared in the supplied tag libraries declared in Section 10.4 “Standard Facelet Tag
Libraries”, as well as accessing third-party tag libraries developed by the application author, or any other third party

| 10-4 JavaServer Faces Specification « June 2009

10.3.3

10.3.3.1

= Define a framework for component authors to group a collection of custom Ul Conponent s into a tag library and
expose them to page authors for use in their pages.

[P1_start facelet taglib_decl]The runtime must support the following syntax for making the tags in a tag library
available for use in a Facelet page.

<htm xm ns="http://ww. w3. org/ 1999/ xhtm "
xm ns: prefi x="nanespace_uri">

Where prefi x is a page author chosen arbitrary string used in the markup inside the <ht m > tag to refer to the tags
declared within the tag library and nanespace_uri is the string declared in the <namespace> element of the facelet
tag library descriptor. For example, declaring xm ns: h="http://j ava. sun. com j sf/ ht m " within the <ht m >
element in a Facelet XHTML page would cause the runtime to make all tags declared in Section 10.4.2 “Standard HTML
RenderKit Tag Library” to be available for use in the page using syntax like: <h: i nput Text />

[P1 end facelet taglib decl]

[P1 start facelet taglib discovery]The run time must support two modes of discovery for Facelet tag library descriptors
= Via declaration in the web.xml, as specified in Section 11.1.3 “Application Configuration Parameters”

= Via auto discovery by placing the tag library discriptor file within a jar on the web application classpath, naming the
file so that it ends with “. t agl i b. xm ”, without the quotes, and placing the file in the META- | NF directory in the
jar file.

The discovery of tag library files must happen at application startup time and complete before the application is placed
in service. Failure to parse, process and otherwise interpret any of the tag library files discovered must cause the
application to fail to deploy and must cause an informative error message to be

logged.[P1 end facelet taglib discovery]

The specification for how to interpret a facelet tag library descriptor is included in the documentation elements of the
schema for such files, see Section 1.1 “XML Schema Definition for Application Configuration Resource file”.

Requirements specific to composite components

The text in this section makes use of the terms defined in Section 3.6.1.6 “Composite Component Terms”. When such a
term appears in this section, it will be in emphasis font face.

Declaring a composite component library for use in a Facelet page

[P1 _start composite library decl]The runtime must support the following two ways of declaring a composite component
library.

= [f a facelet taglibrary is declared in an XHTML page with a namespace starting with the string
“http://java. sun. conij sf/conposite/” (without the quotes), the remainder of the namespace declaration
is taken as the name of a resource library as described in Section 2.6.1.4 “Libraries of Localized and Versioned
Resources”, as shown in the following example:

<htm xm ns="http://ww. w3. org/ 1999/ xhtm "
xm ns: ez="http://java. sun. con j sf/conposi te/ ezconp" >

The runtime must look for a resource library named ezconp. If the substring following

“http://java. sun. conij sf/conposite/” contains a “/ ” character, or any characters not legal for a library
name the following action must be taken. If appl i cati on. get Pr oj ect St age() is Devel opnent an
informative error message must be placed in the page and also logged. Otherwise the message must be logged only.

Chapter 10 Facelets and its use in Web Applications 10-5

10.3.3.2

10.3.3.3

= As specified in Section 1.1 “XML Schema Definition for Application Configuration Resource file”, the runtime must
also support the <conposi t e- | i br ary- name> element. The runtime must interpret the contents of this element
as the name of a resource library as described in Section 2.6.1.4 “Libraries of Localized and Versioned Resources”. If
a facelet tag library descriptor file is encountered that contains this element, the runtime must examine the
<namespace> element in that same tag library descriptor and make it available for use in an XML namespace
declaration in facelet pages.[P1 end composite library decl]

Creating an instance of a fop level component

[P1_start top level component creation]If, during the process of building the view, the facelet runtime encounters an
element in the page using the prefix for the namespace of a composite component library, the runtime must create a
Resour ce instance with a library property equal to the library name derived in Section 10.3.3.1 “Declaring a composite
component library for use in a Facelet page”and call the variant of appl i cati on. cr eat eConponent () that takes
a Resour ce.

After causing the top level component to be instantiated, the runtime must create a Ul Conponent with component-
family of j avax. f aces. Panel and renderer-type j avax. f aces. G oup to be installed as a facet of the top level
component under the facet name Ul Conponent . COVPOSI TE_FACET_NAME.[P1 _end top level component creation]

Populating a top level component instance with children

[P1_start top level component population]As specified in Section 3.6.1.3 “How does one make a composite
component?” the runtime must support the use of conposi t e: tag library in the defining page pointed to by the
Resour ce derived as specified in Section 10.3.3.2 “Creating an instance of a top level component”.

[P1_start top_level component population]The runtime must ensure that all U Conponent children in the composite
component definition within the defining page are placed as children of the

Ul Conponent . COVPOSI TE_FACET_NAME facet of the top level facet.[P1 _end top level component population]

Please see the tag library documentation for the <conposi t e: i nsert Chi | dr en> and
<conposi te: i nsert Facet > tags for details on these two tags that are relevant to populating a top level component
instance with children.

Special handling is required for attributes declared on the composite component tag instance in the using page.
[P1 _start composite_component tag attributes]The runtime must ensure that all such attributes are copied to the
attributes map of the top level component instance in the following manner.

= Obtain a reference to the Expr essi onFact ory, for discussion called expressionFactory.
= Let the value of the attribute in the using page be value.
» If value is “id” or “binding” without the quotes, skip to the next attribute.

= [f the value of the attribute starts with “#{* (without the quotes) call
expressi onFact ory. creat eVal ueExpressi on(el Context, value, Object.class)

= If the value of the attribute does not start with “#{ “, call
expressi onFact ory. creat eVal ueExpr essi on(val ue, Obj ect. cl ass)

= [f there already is a key in the map for value, inspect the type of the value at that key. If the type is
Met hodExpr essi on take no action. [P1_end composite_component tag_attributes]

For code that handles tag attributes on Ul Conponent XHTML elements special action must be taken regarding
composite components. [P1_start composite_component_method expression]If the type of the attribute is a

Met hodExpr essi on, the code that takes the value of the attribute and creates an actual Met hodExpr essi on
instance around it must take the following special action. Inspect the value of the attribute. If the EL expression string
starts with the cc implicit object, is followed by the special string “at t r s” (without the quotes), as specified in
Section 5.6.2.2 “Composite Component Attributes ELResolver”, and is followed by a single remaining expression
segment, let the value of that remaining expression segment be attrName. In this case, the runtime must guarantee that
the actual Met hodExpr essi on instance that is created for the tag attribute have the following behavior in its

i nvoke() method.

| 10-6 JavaServer Faces Specification « June 2009

= Obtain a reference to the current composite component by calling
Ul Component . get Cur r ent Conposi t eConponent ().

= Look in the attribute of the component for a key under the value attrName.

= There must be a value and it must be of type Met hodExpr essi on. If either of these conditions are f al se allow
the ensuing exception to be thrown.

= Calli nvoke() on the discovered Met hodEXpr essi on, passing the arguments passed to our i nvoke()
method.[P1_end composite_component method expression]

[P1 start composite component retargeting]Once the composite component has been populated with children, the
runtime must ensure that Vi ewHandl er . r et ar get At t achedObj ect s() and then

Vi ewHandl er . r et ar get Met hodExpr essi ons() is called, passing the top level
component.[P1_end composite _component_retargeting] The actions taken in these methods set the stage for the tag
attribute behavior and the special Met hodExpr essi on handling behavior described previously.

[P1 start nested composite components]The runtime must support the inclusion of composite components within the
composite component definition. [P1_end nested composite components].

10.4 Standard Facelet Tag Libraries

This section specifies the tag libraries that must be provided by an implementation.

10.4.1 JSF Core Tag Library

This tag library must be equivalent to the one specified in Section 9.4 “JSF Core Tag Library”. The following additional
tags apply to the Facelet Core Tag Library only.

10.4.1.1 <f:ajax>

This tag serves two roles depending on its placement. If this tag is nested within a single component, it will associate an
Ajax action with that component. If this tag is placed around a group of components it will associate an Ajax action with
all components that support the “events” attribute.

Syntax

<f:ajax [event="Literal”] [execute="Literal | Value Expression”] [render="Literal | Value Expression”] [onevent="Literal
| Value Expression”] [onerror="Literal | Value Expression”] | [listener="Method Expression”] [disabled="Literal|Value
Expression”] [immediate="Literal|ValueExpression]/>

Body Content

empty.

Chapter 10 Facelets and its use in Web Applications 10-7

Attributes

The following optional attributes are available:

TABLE 10-3

Name

Expr

Type

Description

event

execute

render

onevent

onerror

disabled

listener

immediate

String

VE

VE

VE

VE

ME

VE

String

Collection<S
tring>

Collection<S
tring>

String

String

boolean

MethodExpr
ession

boolean

A String identifying the type of event the Ajax
action will apply to. If specified, it must be one of
the events supported by the component the Ajax
behavior is being applied to. If not specified, the
default event is determined for the component. The
default event is “action” for ActionSource
components and “valueChange” for
EditableValueHolder components.

If a literal is specified, it must be a space delimited
String of component identifiers and/or one of the
keywords outlined in Section 14.2.2 “Keywords”.
If not specified, then @this is the default. If a
ValueExpression is specified, it must refer to a
property that returns a Collection of Strings. Each
String in the Collection must not contain spaces.

If a literal is specified, it must be a space delimited
String of component identifiers and/or one of the
keywords outlined in Section 14.2.2 “Keywords”.
If not specified, then @none is the default . If a
ValueExpression is specified, it must refer to a
property that returns a Collection of Strings. Each
String in the Collection must not contain spaces.

The name of a JavaScript function that will handle
events

The name of a JavaScript function that will handle
CITOTS.

“false” indicates the Ajax behavior script should
be rendered; “true” indicates the Ajax behavior
script should not be rendered. “false” is the
default.

The listener method to execute when Ajax requests
are processed on he server.

If “true” behavior events generated from this
behavior are broadcast during Apply Request
Values phase. Otherwise, the events will be
broadcast during Invoke Aplications phase.

Specifying “execute”/’render” Identifiers

The String value for identifiers specified for execut e and r ender
in the JavaDocs for UIComponent.findComponent. [P1_start execrenderlds]The implementation must resolve these

identifiers as specified for UIComponent.findComponent.[P1_end]

10-8

JavaServer Faces Specification « June 2009

may be specified as a search expression as outlined

Constraints

This tag may be nested within any of the standard HTML components. It may also be nested within any custom
component that implements the ClientBehaviorHolder interface. Refer to Section 3.7 “Component Behavior Model” for
more information about this interface. [P1_start ajaxtag events]A TagAttibuteException must be thrown if an “event”
attribute value is specified that does not match the events supported by the component type. [P1_end ajaxtag events]
For example:

<h: comandButton ..>
<f:aj ax event ="val ueChange”/ >
</ h: conmandButton i d="buttonl” ...>

An attempt is made to apply a “valueChange” Ajax event to an “action” component. This is invalid and the Ajax
behavior will not be applied. [P1_start bevent]The event attribute that is specified, must be one of the events returned
from the ClientBehaviorHolder component implementation of ClientBehaviorHolder.getEventNames. If an event is not
specified the value returned from the component implementation of ClientBehaviorHolder.getDefaultEventName must be
used. If the event is still not determined, a TagAttributeException must be thrown.[P1 end]

This tag may also serve to “ajaxify” regions of a page by nesting a group of components within it:

<f:aj ax>
<h: panel Gi d>
<h:input Text id="text1"/>
<h: commandBut ton i d="buttonl”/>
</ h: panel Gri d>
</f:aj ax>

From this example, “text1” and “button1” will have ajax behavior applied to them. The default events for these
components would cause Ajax requests to fire. For “text1” a “valueChange” event would apply and for “buttonl” an
“action” event would apply. <h:panelGrid> has no default event so in this case a behavior would not be applied.

<f:aj ax event="click”>
<h:panel Gid id="gridl”>
<h:input Text id="text1"/>
<h: commandBut t on i d="buttonl” >
<f:aj ax event="rnouseover”/>
</ h: conmandBut t on>
</ h: panel Gi d>
</f:aj ax>

From this example, “grid1” and “text1” would have ajax behavior applied for an “onclick” event. “button1” would have
ajax behavior applied for both “mouseover” and “onclick” events.

<f:aj ax>
<h: commandButt on i d="buttonl”>
<f:ajax/>
</ h: conmandBut t on>
</f:aj ax>

Chapter 10 Facelets and its use in Web Applications 10-9

For this example, the inner <f:ajax/> would apply to “buttonl”. The outer (wrapping) <f:ajax> would not be applied,
since it is the same type of submitting behavior (AjaxBehavior) and the same event type (action).

<f:aj ax event="action”>
<h: commandButton i d="buttonl”>
<b: greet event="action”/>
</ h: conmandBut t on>
</f:ajax>

Here, there is a custom behavior “greet” attached to “button1”. the outer <f:ajax> Ajax behavior will also get applied to
“button1”. But it will be applied *after* the “greet” behavior.

Description

Enable one or more components in the view to perform Ajax operations. This tag handler must create an instance of
javax.faces.component.behavior.AjaxBehavior instance using the tag attribute values. If this tag is nested within a single
ClientBehaviorHolder component:

= [f the event attribute is not specified, determine the event by calling the component’s getDefaultEventName method.
If that returns null, throw an exception.

= If the event attribute is specified, ensure that it is a valid event - that is one of the events contained in the Collection
returned from getEventNames method. If it does not exist in this Collection, throw an exception.

» Add the AjaxBehavior to the component by calling the addBehavior method, passing the event and AjaxBehavior
instance.

If this tag is wrapped around component children add the AjaxBehavior instance to AjaxBehaviors by calling
AjaxBehaviors.pushBehavior. As subsequent child components that implement the BehaviorHolder interface are
evaluated, this AjaxBehavior instance must be added as a Behavior to the component. Please refer to the Javadocs for the
core tag handler AjaxHandler for additional requirements.

Examples

Apply Ajax to “buttonl” and “text1”:

<f:aj ax>
<h: fornp
<h: comandButton i d="buttonl” ...>
<h:inputText id="text1l” ..>
</ h:fornp
</f:aj ax>

Apply Ajax to “textl”:

<f:aj ax event="val ueChange” >
<h: forne
<h: commandButton id="buttonl” ...>
<h:input Text id="text1l” ..>
</ h: fornmp
</ f:aj ax>

| 10-10 JavaServer Faces Specification + June 2009

10.4.1.2

10.4.1.3

10.4.1.4

Apply Ajax to “buttonl”:

<f:ajax event="action”>

<h: fornp
<h: commandButton i d="buttonl” ...>
<h:input Text id="text1l” ..>
</ h:forme
</f:ajax>

Override default Ajax action. “buttonl” is associated with the Ajax “execute=’cancel’” action:

<f:ajax event="action” execute="reset”>
<h: forne
<h: commandButton id="buttonl” ...>
<f:aj ax execute="cancel”/>
</ h: commandBut t on>
<h:input Text id="text1l” ..>
</ h: forme
</f:ajax>

<f:event>

Allow JSF page authors to install Conponent Syst emEvent Li st ener instances on a component in a page. Because
this tag is closely tied to the event system, please see section Section 3.4.3.4 “Declarative Listener Registration” for the
normative specification.

<f'metadata>

Register a facet on the parent component, which must be the Ul Vi ewRoot . This must be a child of the <f : vi ew>.
This tag must reside within the top level XHTML file for the given viewld, not in a template. The implementation must
ensure that the direct child of the facet is a Ul Panel , even if there is only one child of the facet. The implementation
must set the id of the Ul Panel to be the value of the Ul Vi ewRoot . METADATA FACET_NAME symbolic constant.

<f:validateBean>

Register a BeanValidator instance on the parent EditableValueHolder UIComponent or the EditableValueHolder
UIComponent whose client id matches the value of the "for" attribute when used within a composite component. If
neither criteria is satisfied, save the validation groups in an attribute on the parent UIComponent to be used as defaults
inherited by any BeanValidator in that branch of the component tree. Don't save the validation groups string if it is null
or empty string. If the validationGroups attribute is not defined on this tag when used in an EditableValueHolder, or the
value of the attribute is empty string, attempt to inherit the validation groups from the nearest parent component on
which a set of validation groups is stored. If no validation groups are inherited, assume the Default validation group,
javax.validation.groups.Default. If the BeanValidator is one of the default validators, then this tag simply specializes the
validator by providing the list of validation groups to be used. There are two usage patterns for this tag, both shown
below. The tags surrounding and nested within the <f : val i dat eBean> tag, as well as the attributes of the tag itself,
are show for illustrative purposes only.

Syntax

<h:i nput Text val ue="#{nodel . property}”>

<f:val i dat eBean val i dati onGroups=

"javax. val i dati on. groups. Def aul t, app. val i dati on. groups. Order"/>
</ h:i nput Text >

Chapter 10 Facelets and its use in Web Applications 10-11

or

<h: forne
<f:val i dat eBean>
<h:i nput Text val ue="#{nodel . property}” />

<h: sel ect OneRadi o val ue="#{nodel . radi oProperty}” > ... </h:sel ect OneRadi o>
<!-- other input conponents here -->
</f:val i dat eBean>
</h:forne

Body Content
Empty in the case when the Bean Validator is to be registered on a parent component.

Filled with input components when the Bean Validator is to be set on all of the ensclosing input components.

Attributes
Nanme Exp Type Descri ption
bi ndi ng VE Val ueEx A Val ueExpressi on that eval uates
pressio to an object that inplenents
n javax. faces. val i dat e. BeanVal i dat
or
di sabl ed VE Bool ean A flag which indicates whether
this validator, or a default
validator with the id
"javax. faces. Bean", should be
permtted to be added to this
conmponent
val i dation VE String A comua-delinmted of type-safe
Groups val i dati on groups that are passed
to the Bean Validation APl when
val i dating the val ue
Constraints

Must be nested in an EditableValueHolder or nested in a composite component and have a for attribute (Facelets only).
Otherwise, it simply defines enables or disables the validator as a default for the branch of the component tree under the
parent component and/or sets the validation group defaults for the branch. No exception is thrown if one of the first two
conditions are not met, unlike other standard validators.

JSR 303 allows the user to validate a graph of objects. This version of the JSF specification does not support graph
validation.

Description

= Must extend the ValidateHandler class.

= If not within an EditableValueHolder or composite component, store the validation groups as defaults for the current
branch of the component tree, but only if the value is a non-empty string.

= [f the disabled attribute is true, the validator should not be added. In addition, the validatorld, if present, should be
added to an exclusion list on the parent component to prevent a default validator with the same id from being
registered on the component.

= The createValidator() method must:

| 10-12 JavaServer Faces Specification + June 2009

10.4.1.5

If binding is non-null, create a ValueExpression by invoking Application.createValueExpression() with binding as
the expression argument, and Validator.class as the expectedType argument. Use the ValueExpression to obtain a
reference to the Validator instance. If there is no exception thrown, and ValueExpression.getValue() returned a non-
null object that implements javax.faces.validator. Validator, it must then cast the returned instance to
javax.faces.validator.BeanValidator, configure its properties based on the specified attributes, and return the
configured instance. If there was an exception thrown, rethrow the exception as a TagException.

Use the validatorld if the validator instance could not be created from the binding attribute. Call the
createValidator() method of the Application instance for this application, passing validator id "javax.faces.Bean". If
the binding attribute was also set, evaluate the expression into a ValueExpression and store the validator instance
by calling setValue() on the ValueExpression. It must then cast the returned instance to
javax.faces.validator.BeanValidator, configure its properties based on the specified attributes, and return the
configured instance. If there was an exception thrown, rethrow the exception as a TagException.

<f:validateRequired>

Register a RequiredValidator instance on the parent EditableValueHolder UIComponent or the Editable ValueHolder
UIComponent whose client id matches the value of the "for" attribute when used within a composite component.

Syntax

<f:validateRequired/>

Body Content

empty
Attributes
Name Exp Type Description
bi ndi ng VE Val ueEx A Val ueExpressi on that eval uates
pressio to an object that inplenents
n javax. faces. val i dat e. Requi r edVal
i dat or
di sabl ed VE Bool ean A flag which indicates whether
this validator, or a default
validator with the id
"javax. faces. Requi red", should
be pernmitted to be added to this
conmponent
Constraints

Must be nested in an EditableValueHolder or nested in a composite component and have a for attribute (Facelets only).
Otherwise, it simply enables or disables the use of the validator as a default for the branch of the component tree under
the parent. No exception is thrown if one of the first two conditions are not met, unlike other standard validators.

Description
Must use or extend the ValidateHandler class.

Chapter 10 Facelets and its use in Web Applications 10-13

10.4.2

10.4.3

10.4.4

10.4.5

= [f the disabled attribute is true, the validator should not be added. In addition, the validatorld, if present, should be
added to an exclusion list on the parent component to prevent a default validator with the same id from being
registered on the component

s The createValidator() method must:

= If binding is non-null, create a ValueExpression by invoking Application.createValueExpression() with binding as
the expression argument, and Validator.class as the expectedType argument. Use the ValueExpression to obtain a
reference to the Validator instance. If there is no exception thrown, and ValueExpression.getValue() returned a non-
null object that implements javax.faces.validator.Validator, it must then cast the returned instance to
javax.faces.validator.RequiredValidator, configure its properties based on the specified attributes, and return the
configured instance. If there was an exception thrown, rethrow the exception as a TagException..

» Use the validatorld if the validator instance could not be created from the binding attribute. Call the
createValidator() method of the Application instance for this application, passing validator id
"javax.faces.Required". If the binding attribute was also set, evaluate the expression into a ValueExpression and
store the validator instance by calling setValue() on the ValueExpression. It must then cast the returned instance to
javax.faces.validator.RequiredValidator, configure its properties based on the specified attributes, and return the
configured instance. If there was an exception thrown, rethrow the exception as a TagException.

Standard HTML RenderKit Tag Library

This tag library must be equivalent to the one specified in Section 9.5 “Standard HTML RenderKit Tag Library”.

Facelet Templating Tag Library

This tag library is the specified version of the ui: tag library found in pre JSF 2.0 Facelets. The specification for this
library can be found in the VDLDocs for the ui : library.

Composite Component Tag Library

This tag library is used to declare composite components. The specification for this tag library can be found in the
VDLDocs for the conposi te: library.

JSTL Core and Function Tag Libraries

Facelets exposes a subset of the JSTL Core tag library and the entirety of the JSTL Function tag library. Please see the
VDLDocs for the JSTL Core and JSTL Functions tag libraries for the normative specification.

10.5

Assertions relating to the construction of the view
hierarchy
[P1-start processListenerForAnnotation] When the VDL calls for the creation of a Ul Conponent instance, after calling

Appl i cati on. creat eCorponent () to instantiate the component instance, and after calling
set Render er Type() on the newly instantiated component instance, the following action must be taken.

= Obtain the Render er for this component. If no Render er is present, ignore the following steps.

| 10-14 JavaServer Faces Specification + June 2009

= Call get d ass() onthe Render er instance and inspect if the Li st ener For annotation is present. If so, inspect
if the Render er instance implements Conponent Syst enEvent Li st ener. If neither of these conditions are
t r ue, ignore the following steps.

= Obtain the value of the syst enEvent Cl ass() property of the Li st ener For annotation on the Render er
instance.

= Call subscri beToEvent () on the Ul Conmponent instance from which the Render er instance was obtained,
using the syst enEvent Cl ass from the annotation as the second argument, and the Render er instance as the
third argument.

[P1-end]

Chapter 10 Facelets and its use in Web Applications 10-15

10-16

JavaServer Faces Specification « June 2009

11

Using JSF in Web Applications

11.1

11.1.1

This specification provides JSF implementors significant freedom to differentiate themselves through innovative
implementation techniques, as well as value-added features. However, to ensure that web applications based on JSF can
be executed unchanged across different JSF implementations, the following additional requirements, defining how a JSF-
based web application is assembled and configured, must be supported by all JSF implementations.

Web Application Deployment Descriptor

JSF-based applications are web applications that conform to the requirements of the Java Servlet Specification (version
2.3 or later), and also use the facilities defined in this specification. Conforming web applications are packaged in a web
application archive (WAR), with a well-defined internal directory structure. A key element of a WAR is the web
application deployment descriptor, an XML document that describes the configuration of the resources in this web
application. This document is included in the WAR file itself, at resource path / WEB- | NF/ web. xm .

Portable JSF-based web applications must include the following configuration elements, in the appropriate portions of
the web application deployment descriptor. Element values that are rendered in italics represent values that the
application developer is free to choose. Element values rendered in bold represent values that must be utilized exactly as
shown.

Executing the request processing lifecycle via other mechanisms is also allowed (for example, an MVC-based
application framework can incorporate calling the correct phase implementations in the correct order); however, all JSF
implementations must support the functionality described in this chapter to ensure application portability.

Servlet Definition

JSF implementations must provide request processing lifecycle services through a standard servlet, defined by this
specification. [P1-start-servlet] This servlet must be defined, in the deployment descriptor of an application that wishes to
employ this portable mechanism, as follows:

<servl et >
<servl et-nane> faces-servl et-nane </servl et-nane>
<servl et-class>
j avax. f aces. webapp. FacesSer vl et
</ servl et-cl ass>
</servlet>

The servlet name, denoted as f aces- ser vl et - name above, may be any desired value; however, the same value must
be used in the servlet mapping (see Section 11.1.2 “Servlet Mapping”).[P1-end]

Chapter 11 Using JSF in Web Applications 11-1

11.1.2

11.1.3

In addition to FacesSer vl et , JSF implementations may support other ways to invoke the JavaServer Faces request
processing lifecycle, but applications that rely on these mechanisms will not be portable.

Servlet Mapping

All requests to a web application are mapped to a particular servlet based on matching a URL pattern (as defined in the
Java Servlet Specification) against the portion of the request URL after the context path that selected this web
application. [P1-start-mapping]JSF implementations must support web application that define a <ser vl et - mappi ng>
that maps any valid ur | - patt er n to the FacesSer vl et . [P1-end]Prefix or extension mapping may be used. When
using prefix mapping, the following mapping is recommended, but not required:

<servl et - mappi ng>
<servl et - name> faces-servl et-nane </servl et-nane>
<url-pattern>/faces/*</url-pattern>

</ servl et - mappi ng>

When using extension mapping the following mapping is recommended, but not required:

<servl et - mappi ng>
<servl et - name> faces-servl et-nane </servl et-nane>
<url-pattern>*.faces</url-pattern>

</ servl et - mappi ng>

In addition to FacesSer vl et , JSF implementations may support other ways to invoke the JavaServer Faces request
processing lifecycle, but applications that rely on these mechanisms will not be portable.

Application Configuration Parameters

Servlet containers support application configuration parameters that may be customized by including <cont ext -
par an® elements in the web application deployment descriptor. [P1-start-configParams]All JSF implementations are
required to support the following application configuration parameter names:

j avax. faces. CONFI G_FI LES -- Comma-delimited list of context-relative resource paths under which the JSF
implementation will look for application configuration resources (see Section 11.4.4 “Application Configuration
Resource Format™), before loading a configuration resource named “/ WEB- | NF/ f aces- confi g. xm ” (if such a
resource exists). If “/ VEB- | NF/ f aces- confi g. xm ” is present in the list, it must be ignored.

= javax. faces. DATETI MECONVERTER _DEFAULT_TI MEZONE_| S_SYSTEM Tl MEZONE -- If this param is set,
and calling t oLower Case() . equal s("true") on a St ri ng representation of its value returns t r ue,
Application. createConverter () must guarantee that the default for the timezone of all
j avax. faces. convert. Dat eTi meConvert er instances must be equal to Ti meZone. get Def aul t ()
instead of “GMT”.

= javax. faces. DEFAULT_SUFFI X -- Allow the web application to define an alternate suffix for JSP pages
containing JSF content. See the javadocs for the symbolic constant
Vi ewHand!| er . DEFAULT_SUFFI X_PARAM_NAME for the complete specification.

= javax.faces. Dl SABLE_FACELET_JSF_VI EWHANDLER -- If this param is set, and calling
t oLower Case() . equal s("true") ona Stri ng representation of its value returns t r ue, the default
Vi ewHandl er must behave as specified in the latest 1.2 version of this specification. Any behavior specified in
Section 7.5 “ViewHandler” and implemented in the default Vi ewHandl| er that pertains to handling requests for
pages authored in the JavaServer Faces View Declaration Language must not be executed by the runtime.

| 11-2 JavaServer Faces Specification « June 2009

j avax. faces. FACELETS LI BRARI ES -- If this param is set, the runtime must interpret it as a semicolon (;)
separated list of paths, starting with “/”” (without the quotes). The runtime must interpret each entry in the list as a
path relative to the web application root and interpret the file found at that path as a facelet tag library, conforming to
the schema declared in Section 1.1 “XML Schema Definition for Application Configuration Resource file”and expose
the tags therein according to Section 10.3.2 “Facelet Tag Library mechanism”. The runtime must also consider the
facel ets. LI BRARI ES param name as an alias to this param name for backwards compatibility with existing
facelets tag libraries.

j avax. faces. FACELETS BUFFER_SI ZE -- The buffer size to set on the response when the ResponseWi t er
is generated. By default the value is -1, which will not assign a buffer size on the response. This should be increased
if you are using development mode in order to guarantee that the response isn't partially rendered when an error is
generated. The runtime must also consider the f acel et s. BUFFER_SI ZE param name as an alias to this param
name for backwards compatibility with existing facelets tag libraries.

j avax. f aces. DECORATORS -- A semicolon (;) delimitted list of class names of type

javax. faces. vi ew. f acel et s. TagDecor at or, with a no-argument constructor. These decorators will be
loaded when the first request for a Facelets VDL view hits the Vi ewHandl er for page compilation.The runtime
must also consider the f acel et s. DECORATORS param name as an alias to this param name for backwards
compatibility with existing facelets tag libraries.

javax. f aces. FACELETS_REFRESH_PERI OD -- When a page is requested, what interval in seconds should the
compiler check for changes. If you don't want the compiler to check for changes once the page is compiled, then use
a value of -1. Setting a low refresh period helps during development to be able to edit pages in a running
application.The runtime must also consider the f acel et s. REFRESH_PERI OD param name as an alias to this
param name for backwards compatibility with existing facelets tag libraries.

j avax. faces. FACELETS RESOURCE RESOLVER -- If this param is set, the runtime must interpret its value as a
fully qualified classname of a java class that extends j avax. f aces. vi ew. f acel et s. Resour ceResol ver
and has a zero argument public constructor or a one argument public constructor where the type of the argument is
Resour ceResol ver. If this param is set and its value does not conform to those requirements, the runtime must
log a message and continue. If it does conform to these requirements and has a one-argument constructor, the default
Resour ceResol ver must be passed to the constructor. If it has a zero argument constructor it is invoked directly.
In either case, the new Resour ceResol ver replaces the old one. The runtime must also consider the

facel et s. RESOURCE_RESCOLVER param name as an alias to this param name for backwards compatibility with
existing facelets tag libraries.

j avax. faces. FACELETS SKI P_COMVENTS -- If this param is set, and calling

t oLower Case() . equal s("true") on a Stri ng representation of its value returns t r ue, the runtime must
ensure that any XML comments in the Facelets source page are not delivered to the client. The runtime must also
consider the f acel et s. SKI P_COMMVENTS param name as an alias to this param name for backwards compatibility
with existing facelets tag libraries.

j avax. faces. FACELETS SUFFI X -- Allow the web application to define an alternate suffix for Facelet based
XHTML pages containing JSF content. See the javadocs for the symbolic constant
Vi ewHand!| er. FACELETS_SUFFI X_PARAM NAME for the complete specification.

javax. faces. FACELETS_VI EW MAPPI NGS -- If this param is set, the runtime must interpret it as a semicolon
(;) separated list of strings that is used to forcibly declare that certain pages in the application must be interpreted as
using Facelets, regardless of their extension. The runtime must also consider the f acel et s. VI EW MAPPI NGS
param name as an alias to this param name for backwards compatibility with existing facelets applications. See the
javadocs for the symbolic constant Vi ewHandl er . FACELETS VI EW MAPPI NGS_PARAM NAME for the complete
specification.

j avax. faces. FULL_STATE_SAVI NG VI EW I DS -- The runtime must interpret the value of this parameter as a
comma separated list of view IDs, each of which must have their state saved using the state saving mechanism
specified in JSF 1.2.

javax. faces. | NTERPRET_EMPTY_STRI NG_SUBM TTED VALUES_AS NULL -- If this param is set, and
calling t oLower Case() . equal s("true") on a St ri ng representation of its value returns t r ue, any
implementation of Ul | nput . val i dat e() must take the following additional action.

If the javax.faces.INTERPRET EMPTY_STRING SUBMITTED VALUES AS NULL context parameter value is
t r ue (ignoring case), and Ullnput.get Submi t t edVal ue() returns a zero-length St ri ng call
Ul I nput . set Submi tt edVal ue(nul |) and continue processing using null as the current submitted value

Chapter 11 Using JSF in Web Applications 11-3

j avax. faces. LI FECYCLE_I D -- Lifecycle identifier of the Li f ecycl e instance to be used when processing
JSF requests for this web application. If not specified, the JSF default instance, identified by
Li fecycl eFact ory. DEFAULT_LI FECYCLE, must be used.

= javax. faces. PARTI AL_STATE_SAVI NG --The ServletContext init parameter consulted by the runtime to
determine if the partial state saving mechanism should be used.
If undefined, the runtime must determine the version level of the application.

= For applications versioned at 1.2 and under, the runtime must not use the partial state saving mechanism.
» For applications versioned at 2.0 and above, the runtime must use the partial state saving mechanism.

= If this parameter is defined, and the application is versioned at 1.2 and under, the runtime must not use the partial
state saving mechanism. Otherwise, If this param is defined, and calling toLowerCase().equals("true") on a St ri ng
representation of its value returns true, the runtime must use partial state mechanism. Otherwise the partial state
saving mechanism must not be used.

= javax. faces. PRODECT_STACE -- A human readable string describing where this particular JSF application is in
the software development lifecycle. Valid values are “Devel opment ”, “Uni t Test ”, “Syst enilest ”, or
“Producti on”, corresponding to the enum constants of the class
javax. faces. application. Project St age. It is also possible to set this value via JNDI. See the javadocs
for Appl i cati on. get Proj ect St age() .

= javax. faces. STATE_SAVI NG_METHOD -- The location where state information is saved. Valid values are
“server” (typically saved in Ht t pSessi on) and “client (typically saved as a hidden field in the subsequent form
submit). If not specified, the default value “server” must be used.

= javax. faces. VALI DATE_EMPTY_FI ELDS -- If this param is set, and calling
toLower Case() . equal s("true") ona Stri ng representation of its value returns t r ue, all submitted fields
will be validated. This is necessary to allow the model validator to decide whether nul | or empty values are
allowable in the current application. If the value is f al se, nul | or empty values will not be passed to the validators.
If the value is the string “ aut 0", the runtime must check if JSR-303 Beans Validation is present in the current
environment. If so, the runtime must proceed as if the value “ t r ue” had been specified. If JSR-303 Beans Validation
is not present in the current environment, the runtime most proceed as if the value “ f al se” had been specified. If
the param is not set, the system must behave as if the param was set with the value “ aut 0” .

= javax. faces.validator.D SABLE DEFAULT_BEAN VALI DATOR -- If this param is set, and calling
toLower Case() . equal s("true") ona String representation of its value returns t r ue, the runtime must not
automatically add the validator with validator-id equal to the value of the symbolic constant
javax. faces. val i dat or . VALIDATOR _ID to the list of default validators. Setting this parameter to t r ue will
have the effect of disabling the automatic installation of Bean Validation to every input component in every view in
the application, though manual installation is still possible.

] [P1- end]

JSF implementations may choose to support additional configuration parameters, as well as additional mechanisms to
customize the JSF implementation; however, applications that rely on these facilities will not be portable to other JSF
implementations.

11.2

Included Classes and Resources

A JSF-based application will rely on a combination of APIs, and corresponding implementation classes and resources, in
addition to its own classes and resources. The web application archive structure identifies two standard locations for
classes and resources that will be automatically made available when a web application is deployed:

= /VEB- | NF/ cl asses -- A directory containing unpacked class and resource files.

= /VEB-I NF/|ib -- A directory containing JAR files that themselves contain class files and resources.

In addition, servlet and portlet containers typically provide mechanisms to share classes and resources across one or
more web applications, without requiring them to be included inside the web application itself.

| 11-4 JavaServer Faces Specification « June 2009

11.2.1

11.2.2

11.2.3

11.2.4

11.2.5

11.2.6

11.2.6.1

The following sections describe how various subsets of the required classes and resources should be packaged, and how
they should be made available.

Application-Specific Classes and Resources

Application-specific classes and resources should be included in / WEB- | NF/ cl asses or / VEB- | NF/ | i b, so that
they are automatically made available upon application deployment.

Servlet and JSP API Classes (javax.servlet.*)

These classes will typically be made available to all web applications using the shared class facilities of the servlet
container. Therefore, these classes should not be included inside the web application archive.

JSP Standard Tag Library (JSTL) API Classes (javax.servlet.jsp.jstl.*)

These classes will typically be made available to all web applications using the shared class facilities of the servlet
container. Therefore, these classes should not be included inside the web application archive.

JSP Standard Tag Library (JSTL) Implementation Classes

These classes will typically be made available to all web applications using the shared class facilities of the servlet
container. Therefore, these classes should not be included inside the web application archive.

JavaServer Faces API Classes (javax.faces.*)

These classes will typically be made available to all web applications using the shared class facilities of the servlet
container. Therefore, these classes should not be included inside the web application archive.

JavaServer Faces Implementation Classes

These classes will typically be made available to all web applications using the shared class facilities of the servlet
container. Therefore, these classes should not be included inside the web application archive.

FactoryFinder

j avax. f aces. Fact or yFi nder implements the standard discovery algorithm for all factory objects specified in the
JavaServer Faces APIs. For a given factory class name, a corresponding implementation class is searched for based on
the following algorithm. Items are listed in order of decreasing search precedence:

1. If a default JavaServer Faces configuration file (/WEB-INF/faces-config.xml) is bundled into the web
application, and it -contains a factory entry of the given factory class name, that factory class is used.

2. If the JavaServer Faces configuration resource(s) named by the j avax. f aces. CONFI G_FI LES
Ser vl et Cont ext init parameter (if any) contain any factory entries of the given factory class name, those factories
are used, with the last one taking precedence.

Chapter 11 Using JSF in Web Applications 11-5

11.2.6.2

3. If there are any META-INF/faces-config.xml resources bundled any JAR files in the web Servl et Context’ s
resour ce pat hs, the factory entries of the given factory class name in those files are used, with the last one
taking precedence.

4. If a META- | NF/ servi ces/ {factory-cl ass- nane} resource is visible to the web application class loader for
the calling application (typically as a result of being present in the manifest of a JAR file), its first line is read and
assumed to be the name of the factory implementation class to use.

5. If none of the above steps yield a match, the JavaServer Faces implementation specific class is used.

If any of the factories found on any of the steps above happen to have a one-argument constructor, with argument the
type being the abstract factory class, that constructor is invoked, and the previous match is passed to the constructor. For
example, say the container vendor provided an implementation of FacesCont ext Fact or y, and identified it in META-
I NF/ servi ces/ javax. f aces. cont ext . FacesCont ext Fact ory in a jar on the webapp ClassLoader. Also
say this implementation provided by the container vendor had a one argument constructor that took a

FacesCont ext Fact ory instance. The Fact or yFi nder system would call that one-argument constructor, passing
the implementation of FacesCont ext Fact ory provided by the JavaServer Faces implementation.

If a Factory implementation does not provide a proper one-argument constructor, it must provide a zero-arguments
constructor in order to be successfully instantiated.

Once the name of the factory implementation class is located, the web application class loader for the calling application
is requested to load this class, and a corresponding instance of the class will be created. A side effect of this rule is that
each web application will receive its own instance of each factory class, whether the JavaServer Faces implementation is
included within the web application or is made visible through the container's facilities for shared libraries.

public static Object getFactory(String factoryNane);

Create (if necessary) and return a per-web-application instance of the appropriate implementation class for the specified
JavaServer Faces factory class, based on the discovery algorithm described above.

JSF implementations must also include implementations of the several factory classes. In order to be dynamically
instantiated according to the algorithm defined above, the factory implementation class must include a public, no-
arguments constructor. [P1-start-factoryNames]For each of the publ i ¢ static final String fields on the class
Fact or yFi nder whose field names end with the string “_ FACTORY” (without the quotes), the implementation must
provide an implementation of the corresponding Factory class using the algorithm described earlier in this section.[P1-
end]

FacesServlet

FacesSer vl et is an implementation of j avax. ser vl et. Ser vl et that accepts incoming requests and passes them
to the appropriate Li f ecycl e implementation for processing. This servlet must be declared in the web application
deployment descriptor, as described in Section 11.1.1 “Servlet Definition”, and mapped to a standard URL pattern as
described in Section 11.1.2 “Servlet Mapping”.

public void init(ServletConfig config) throws ServletException;

Acquire and store references to the FacesCont ext Fact ory and Li f ecycl e instances to be used in this web
application. For the Li f ecycl el nst ance, first consult the i ni t - par amset for this FacesSer vl et instance for a
parameter of the name j avax. f aces. LI FECYCLE_| D. If present, use that as the | i f ecycl el D attribute to the
get Li fecycl e() method of Li f ecycl eFact ory. If not present, consult the cont ext - par amset for this web
application. If present, use that as the | i f ecycl el D attribute to the get Li f ecycl e() method of

| 11-6 JavaServer Faces Specification « June 2009

11.2.6.3

11.2.6.4

11.2.6.5

Li f ecycl eFact ory. If neither param set has a value for j avax. f aces. LI FECYCLE_I D, use the value DEFAULT.
As an implementation note, please take care to ensure that all PhaseLi st ener instances defined for the application are
installed on all lifecycles created during this process.

public void destroy();

Release the FacesCont ext Fact ory and Li f ecycl e references that were acquired during execution of the i ni t ()
method.

public void service(Servl et Request request, ServletResponse
response) throws | OException, ServletException;

For each incoming request, the following processing is performed:

= Using the FacesCont ext Fact ory instance stored during the i ni t () method, call the get FacesCont ext ()
method to acquire a FacesCont ext instance with which to process the current request.

= Call the execut e() method of the saved Li f ecycl e instance, passing the FacesCont ext instance for this
request as a parameter. If the execut e() method throws a FacesExcept i on, re-throw it as a
Ser vl et Excepti on with the FacesExcept i on as the root cause.

= Call the render () method of the saved Li f ecycl e instance, passing the FacesCont ext instance for this
request as a parameter. If the r ender () method throws a FacesExcept i on, re-throw it as a
Ser vl et Except i on with the FacesExcept i on as the root cause.

= Call the r el ease() method on the FacesCont ext instance, allowing it to be returned to a pool if the JSF
implementation uses one.

[P1-start-servletParams]|The FacesServlet implementation class must also declare two static public final String constants

whose value is a context initialization parameter that affects the behavior of the servlet:

= CONFI G_FI LES_ATTR -- the context initialization attribute that may optionally contain a comma-delimited list of
context relative resources (in addition to / WEB- | NF/ f aces- confi g. xm which is always processed if it is
present) to be processed. The value of this constant must be “j avax. f aces. CONFI G_FI LES”.

» LI FECYCLE_| D_ATTR -- the lifecycle identifier of the Li f ecycl e instance to be used for processing requests to
this application, if an instance other than the default is required. The value of this constant must be
“j avax. faces. LI FECYCLE_| D”.[Pl-end]

UIComponentELTag

[P1-start-ui conponent el t ag] U Conmponent ELTag is an implementation of

j avax. servl et.]jsp.tagext.BodyTag, and must be the base class for any JSP custom action that corresponds to
a JSF Ul Conponent .[Pl-end] See Chapter 9 “Integration with JSP, and the Javadocs for Ul Conponent ELTag, for
more information about using this class as the base class for your own Ul Conponent custom action classes.

FacetTag

JSP custom action that adds a named facet (see Section 3.1.9 “Facet Management”) to the UIComponent associated with
the closest parent UIComponent custom action. See Section 9.4.6 “<f:facet>".

ValidatorTag

JSP custom action (and convenience base class) that creates and registers a Val i dat or instance on the U Conponent
associated with the closest parent Ul Conponent custom action. See Section 9.4.15 “<f:validateDoubleRange>",
Section 9.4.16 “<f:validateRegex>", Section 9.4.17 “<f:validateLongRange>", and Section 9.4.18 “<f:validator>".

Chapter 11 Using JSF in Web Applications 11-7

11.3

11.3.1

11.3.2

11.3.3

11.3.4

11.3.5

Deprecated APIs in the webapp package

Faces depends on version JSP 2.1 or later, and the JSP tags in Faces expose properties that leverage concepts specific to
that release of JSP. Importantly, most Faces JSP tag attributes are either of type j avax. el . Val ueExpr essi on or

j avax. el . Met hodExpr essi on. For backwards compatability with existing Faces component libraries that expose
themselves as JSP tags, the existing classes relating to JSP have been deprecated and new ones introduced that leverage
the EL APL

AttributeTag

[P1-start-attributetag]The faces implementation must now provide this class.[P1-end]

ConverterTag

This has been replaced with Convert er ELTag

Ul Conponent BodyTag

All component tags now implement BodyTag by virtue of the new class Ul Comrponent O assi cTagBase
implementing Body Tag. This class has been replaced by Ul Conponent ELTag.

Ul Conponent Tag

This component has been replaced by Ul Conponent ELTag.

Val i dat or Tag

This component has been replaced by Val i dat or ELTag.

11.4

11.4.1

Application Configuration Resources

This section describes the JSF support for portable application configuration resources used to configure application
components.

Overview

JSF defines a portable configuration resource format (as an XML document) for standard configuration information. One
or more such application resources will be loaded automatically, at application startup time, by the JSF implementation.
The information parsed from such resources will augment the information provided by the JSF implementation, as
described below.

| 11-8 JavaServer Faces Specification « June 2009

11.4.2

11.4.3

In addition to their use during the execution of a JSF-based web application, configuration resources provide information
that is useful to development tools created by Tool Providers. The mechanism by which configuration resources are made
available to such tools is outside the scope of this specification.

Application Startup Behavior

Implementations may check for the presence of a ser vl et - cl ass definition of class
j avax. f aces. webapp. FacesSer vl et in the web application deployment descriptor as a means to abort the
configuration process and reduce startup time for applications that do not use JavaServer Faces Technology.

At application startup time, before any requests are processed, the [P1-start-startup]JSF implementation must process
zero or more application configuration resources, located according as follows

Make a list of all of the application configuration resources found using the following algorithm:

= Search for all resources that match either “META- | NF/ f aces- confi g. xni ” or end with “. f aces-
confi g. xm ” directly in the “META- | NF” directory. Each resource that matches that expression must be considered
an application configuration resource.

= Check for the existence of a context initialization parameter named j avax. f aces. CONFI G_FI LES. If it exists,
treat it as a comma-delimited list of context relative resource paths (starting with a “/”), and add each of the specfied
resources to the list.

Let this list be known as applicationConfigurationResources for discussion. Also, check for the existence of a web
application configuration resource named “/ VEB- | NF/ f aces- conf i g. xm ”, and refer to this as
applicationFacesConfig for discussion, but do not put it in the list. When parsing the application configuration resources,
the implementation must ensure that applicationConfigurationResources are parsed before applicationFacesConfig.[P1-
end]

Please see Section 11.4.7 “Ordering of Artifacts” for details on the ordering in which the decoratable artifacts in the
application configuration resources in applicationConfigurationResources and applicationFacesConfig must be
processed.

This algorithm provides considerable flexibility for developers that are assembling the components of a JSF-based web
application. For example, an application might include one or more custom Ul Conmponent implementations, along with
associated Render er s, so it can declare them in an application resource named “/ WEB- | NF/ f aces- confi g. xm ”
with no need to programmatically register them with Appl i cat i on instance. In addition, the application might choose
to include a component library (packaged as a JAR file) that includes a “META- | NF/ f aces- confi g. xm ” resource.
The existence of this resource causes components, renderers, and other JSF implementation classes that are stored in this
library JAR file to be automatically registered, with no action required by the application.

[P1-start-PostConstructApplicationEvent|The runtime must publish the
j avax. faces. event . Post Construct Appl i cati onEvent immediately after all application configuration
resources have been processed.[P1-end]

[P1-start-startupErrors] XML parsing errors detected during the loading of an application resource file are fatal to
application startup, and must cause the application to not be made available by the container. JSF implementations that
are part of a Java EE technology-compliant implementation are required to validate the application resource file against
the XML schema for structural correctness. [P1-end]|The validation is recommended, but not required for JSF
implementations that are not part of a Java EE technology-compliant implementation.

Application Shutdown Behavior

When the JSF runtime is directed to shutdown by its container, the following actions must be taken. [p1-start-
application-shutdown]

1. Ensure that calls to FacesCont ext . get Current | nst ance() that happen during application shutdown return
successfully, as specified in the Javadocs for that method.

Chapter 11 Using JSF in Web Applications 11-9

11.4.4

2. Publish the j avax. f aces. event . PreDestr oyAppl i cati onEvent.
3. Call Fact oryFi nder. rel easeFactori es().

[pl-end]

Application Configuration Resource Format

[P1-start-schema]Application configuration resources that are written to run on JSF 2.0 must include the following
schema declaration and must conform to the schema shown in Chapter A “Appendix A - JSF Metadata:

<faces-config xm ns="http://java. sun. coni xm / ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun.com xm / ns/j avaee

http://java. sun. conl xm / ns/j avaee/ web-facesconfig_2_ 0. xsd"
version="2.0">

Application configuration resources that are written to run on JSF 1.2 Application configuration resources must include
the following schema declaration and must conform to the schema referenced in the schemalocation URI shown below:

<faces-config version="1.2" xm ns=

"http://java. sun.com xnl / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://java. sun.conl xm /ns/j avaee
http://java. sun. conl xm / ns/j avaee/ web- f acesconfig_1 2. xsd">

Application configuration resources that are written to run on JSF 1.1 implementations must use the DTD declaration
and include the following DOCTYPE declaration:

<! DOCTYPE faces-config PUBLIC
“-//Sun M crosystens, Inc.//DID JavaServer Faces Config 1.1//EN
“http://java. sun. com dt d/ web-facesconfig_1_1.dtd”>

Application configuration resources that are written to run on JSF 1.0 implementations must use the DTD declaration for
the 1.0 DTD contained in the binary download of the JSF reference implementation. They must also use the following
DOCTYPE declaration:[P1-end]

<! DOCTYPE f aces-config PUBLIC
“-//Sun M crosystens, Inc.//DTD JavaServer Faces Config 1.0//EN
“http://java. sun. com dt d/ web-facesconfig_1_0.dtd”>

| 11-10 JavaServer Faces Specification + June 2009

11.4.5

Configuration Impact on JSF Runtime

<! DOCTYPE faces-config PUBLIC
“-//Sun M crosystens, Inc.//DID JavaServer Faces Config 1.1//EN
“http://java. sun. com dt d/ web-facesconfig 1 1.dtd”>

The following XML elements! in application configuration resources cause registration of JSF objects into the
corresponding factories or properties. It is an error if the value of any of these elements cannot be correctly parsed,
loaded, set, or otherwise used by the implementation.

= /faces-config/component -- Create or replace a component type / component class pair with the Appl i cati on
instance for this web application.

= /faces-config/converter -- Create or replace a converter id / converter class or target class / converter class pair with
the Appl i cat i on instance for this web application.

= /faces-config/render-kit -- Create and register a new Render Ki t instance with the Render Ki t Fact ory, if one
does not already exist for the specified r ender - ki t -i d.

= /faces-config/render-Kit/renderer -- Create or replace a component family + renderer id / renderer class pair with the
Render Ki t associated with the render-kit element we are nested in.

= /faces-config/validator -- Create or replace a validator id / validator class pair with the Appl i cat i on instance for
this web application.

For components, converters, and validators, it is legal to replace the implementation class that is provided (by the JSF
implementation) by default. This is accomplished by specifying the standard value for the <conponent -t ype>,
<converter-id>, or <val i dat or - i d> that you wish to replace, and specifying your implementation class. To
avoid class cast exceptions, the replacement implementation class must be a subclass of the standard class being
replaced. For example, if you declare a custom Conver t er implementation class for the standard converter identifier
j avax. faces. | nt eger, then your replacement class must be a subclass of

j avax. faces. convert. | nt eger Converter.

For replacement Render er s, your implementation class must extend j avax. f aces. r ender . Render er. However,
to avoid unexpected behavior, your implementation should recognize all of the render-dependent attributes supported by
the Renderer class you are replacing, and provide equivalent decode and encode behavior.

The following XML elements cause the replacement of the default implementation class for the corresponding
functionality, provided by the JSF implementation. See Section 11.4.6 “Delegating Implementation Support” for more
information about the classes referenced by these elements:

= /faces-config/application/action-listener -- Replace the default Acti onLi st ener wused to process
ActionEvent events with an instance with the class specified. The contents of this element must be a fully
qualified Java class name that, when instantiated, is an Act i onLi st ener.

= /faces-config/application/navigation-handler -- Replace the default Navi gat i onHandl er instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when instantiated, is a
Navi gat i onHandl er.

= /faces-config/application/property-resolver -- Replace the default Pr opert yResol ver instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when instantiated, is a
Propert yResol ver.

= /faces-config/application/state-manager -- Replace the default St at eManager instance with the one specified.
The contents of this element must be a fully qualified Java class name that, when instantiated, is a St at eManager .

= /faces-config/application/system-event-listener -- Instantiate a new instance of the class specified as the content
within a nested system-event-listener-class element, which must implement Syst enEvent Li st ener. This
instance is referred to as systemEventListener for discussion. If a system-event-class is specified as a nested
element within system-event-listener, it must be a class that extends Syst enEvent and has a public zero-
arguments constructor. The T ass object for system-event-class is obtained and is referred to as systemEventClass
for discussion. If system-event-class is not specified, Syst enEvent . cl ass must be used as the value of

1. Identified by XPath selection expressions.

Chapter 11 Using JSF in Web Applications 11-11

11.4.6

systemEventClass. If source-class is specified as a nested element within system-event-listener, it must be a fully
qualified class name. The Cl ass object for source-class is obtained and is referred to as sourceClass for discussion.
If source-class is not specified, let sourceClass be nul | . Obtain a reference to the Appl i cat i on instance and call
subscri beFor Event (f acesEvent Cl ass, sourceCl ass, systenEventLi stener), passing the
arguments as assigned in the discussion.

= /faces-config/application/variable-resolver -- Replace the default Var i abl eResol ver instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when instantiated, is a
Vari abl eResol ver.

= /faces-config/application/view-handler -- Replace the default Vi ewHandl er instance with the one specified. The
contents of this element must be a fully qualified Java class name that, when instantiated, is a Vi ewHandl er.

= /faces-config/application/resource-handler -- Replace the default Resour ceHandl er instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when instantiated, is a
Resour ceHandl er.

The following XML elements cause the replacement of the default implementation class for the corresponding
functionality, provided by the JSF implementation. Each of the referenced classes must have a public zero-arguments
constructor:

= /faces-config/factory/application-factory -- Replace the default Appl i cat i onFact ory instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when instantiated, is an
ApplicationFactory.

= /faces-config/factory/exception-handler-factory -- Replace the default Except i onHandl er Fact or y instance
with the one specified. The contents of this element must be a fully qualified Java class name that, when instantiated,
is a Except i onHandl er Fact ory.

= /faces-config/factory/faces-context-factory -- Replace the default FacesCont ext Fact ory instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when instantiated, is a
FacesCont ext Fact ory.

= /faces-config/factory/lifecycle-factory -- Replace the default Li f ecycl eFact ory instance with the one specified.
The contents of this element must be a fully qualified Java class name that, when instantiated, is a
Li fecycl eFactory.

= /faces-config/factory/view-declaration-language-factory -- Replace the default
Vi ewDecl ar at i onLanguageFact ory instance with the one specified. The contents of this element must be a
fully qualified Java class name that, when instantiated, is a Vi ewDecl ar at i onLanguageFact ory.

= /faces-config/factory/render-kit-factory -- Replace the default Render Ki t Fact or y instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when instantiated, is a
Render Ki t Fact ory.

The following XML elements cause the addition of event listeners to standard JSF implementation objects, as follows.

Each of the referenced classes must have a public zero-arguments constructor.

= /faces-config/lifecycle/phase-listener -- Instantiate a new instance of the specified class, which must implement
PhaselLi st ener, and register it with the Li f ecycl e instance for the current web application.

In addition, the following XML elements influence the runtime behavior of the JSF implementation, even though they do

not cause registration of objects that are visible to a JSF-based application.

= /faces-config/managed-bean -- Make the characteristics of a managed bean with the specified managed- bean-
name available to the default Var i abl eResol ver implementation.

= /faces-config/navigation-rule -- Make the characteristics of a navigation rule available to the default
Navi gat i onHandl er implementation.

Delegating Implementation Support

[P1-decoratable artifacts]The runtime must support the decorator design pattern as specified below for the following
artifacts.

| 11-12 JavaServer Faces Specification + June 2009

= ActionLi stener

= ApplicationFactory

= FacesCont ext Factory

= Lifecycl eFactory

= Navi gati onHandl er

= PropertyResol ver

= RenderKit

= RenderKitFactory

= Resour ceHandl er

=« StateManager

= Vari abl eResol ver

= Vi ewHandl er

[P1 end decoratable artifacts]For all of these artifacts, the decorator design pattern is leveraged, so that if one provides
a constructor that takes a single argument of the appropriate type, the custom implementation receives a reference to the
implementation that was previously fulfilling the role. In this way, the custom implementation is able to override just a

subset of the functionality (or provide only some additional functionality) and delegate the rest to the existing
implementation.

The implementation must also support decoration of a Render Ki t instance. At the point in time of when the
<render - ki t > element is processed in an application configuration resources, if the current Render Ki t Fact ory
already has a Render Ki t instance for the <r ender - ki t - i d> within the <r ender - ki t > element, and the Class
whose fully qualified java class name is given as the value of the <r ender - ki t - cl ass> element within the
<render - ki t > element has a constructor that takes an Render Ki t instance, the existing Render Ki t for that
<render - ki t - i d> must be passed to that constructor, and the RenderKit resulting from the executing of that
constructor must be passed to Render Ki t Fact ory. addRenderKit ().

Chapter 11 Using JSF in Web Applications 11-13

For example, say you wanted to provide a custom Vi ewHand| er that was the same as the default one, but provided a
different implementation of the cal cul at eLocal e() method. Consider this code excerpt from a custom
Vi ewHandl er :

public class MyVi ewHandl er extends Vi ewHandl er {
public MyViewHandl er() { }

public MVi enHandl er (Vi ewHandl er handl er) {
super () ;
ol dVi ewHand| er = handl er;

}

private ViewHandl er ol dVi ewHandl er = nul | ;

/1 Delegate the renderView() nethod to the old handl er
public void renderVi ew(FacesCont ext context, U Vi ewRoot view)
throws | OException, FacesException {
ol dVi ewHandl er. render Vi ew(cont ext, view);

}

/1 Del egate other nethods in the same nmanner

/1l OQverridden version of calcul ateLocal e()

public Local e cal cul ateLocal e(FacesCont ext context) {
Locale locale = ... // Customcal cul ation
return | ocal e;

}

The second constructor will get called as the application is initially configured by the JSF implementation, and the
previously registered Vi ewHandl er will get passed to it.

In version 1.2, we added new wrapper classes to make it easier to override a subset of the total methods of the class and
delegate the rest to the previous instance. We provide wrappers for j avax. f aces. appl i cati on. Vi enHandl er,
javax. faces. application. St at eManager, and j avax. f aces. cont ext. ResponseW it er. For
example, you could have a f aces-confi g. xm file that contains the following:

<appl i cation>
<vi ew handl er >com f 0oo. NewVi ewHand| er </ vi ew handl er >
<st at e- manager >com f 00. NewSt at eManager </ st at e- manager >
</ appl i cation>

| 11-14 JavaServer Faces Specification + June 2009

11.4.7

Where your implementations for these classes are simply:

package com f oo;

i nport javax.faces. application. Vi ewHandl er;
i mport javax.faces. application. Vi ewHandl er W apper ;

public class Newi ewHandl er ext ends Vi ewHandl er W apper {
private ViewHandl er ol dVi ewHandl er = nul | ;

publ i ¢ Newi ewHandl er (Vi ewHandl er ol dVi ewHandl er) {
t hi s. ol dVi ewHandl er = ol dVi ewHandl er;

}

public Vi ewHandl er get Wapped() {
return ol dVi ewHandl er;

}
}

package com f oo;

i nport javax.faces. application. StateManager;
i nport javax.faces. application. StateManager W apper;

public class NewStat eManager extends StateManager W apper {
private StateManager ol dStateManager = null;

publ i ¢ NewSt at eManager (St at eManager ol dSt at eManager) {
t hi s. ol dSt at eManager = ol dSt at eManager ;

}

public StateManager get Wapped() {
return ol dSt at eManager;

}

This allows you to override as many or as few methods as you’d like.

Ordering of Artifacts

Because the specification allows the application configuration resources to be composed of multiple files, discovered and
loaded from several different places in the application, the question of ordering must be addressed. This section specifies
how application configuration resource authors may declare the ordering requirements of their artifacts.

Section 11.4.2 “Application Startup Behavior” defines two concepts: applicationConfigurationResources and
applicationFacesConfig. The former is an ordered list of all the application configuration resources except the one at
“WEB- | NF/ f aces- confi g. xm 7, and the latter is a list containing only the one at “VEB- | NF/ f aces-

config.xm”.

An application configuration resource may have a top level <name> element of type j avaee: j ava-
i denti fi er Type. [Pl-facesConfigldStart]If a <nanme> element is present, it must be considered for the ordering of
decoratable artifacts (unless the duplicate name exception applies, as described below).

Chapter 11

Using JSF in Web Applications

11-15

Two cases must be considered to allow application configuration resources to express their ordering preferences.

1. Absolute ordering: an <absol ut e- or deri ng> element in the applicationFacesConfig
In this case, ordering preferences that would have been handled by case 2 below must be ignored.

Any <name> element direct children of the <absol ut e- or der i ng> must be interpreted as indicating the absolute
ordering in which those named application configuration resources, which may or may not be present in
applicationConfigurationResources, must be processed.

The <absol ut e- or der i ng> element may contain zero or one <0t hers /> elements. The required action for
this element is described below. If the <absol ut e- or der i ng> element does not contain an <ot hers />
element, any application configuration resources not specifically mentioned within <name /> elements must be
ignored.

Duplicate name exception: if, when traversing the children of <absol ut e- or der i ng>, multiple children with the
same <name> element are encountered, only the first such occurrence must be considered.

If an <or der i ng> element appears in the applicationFacesConfig, an informative message must be logged and the
element must be ignored.

2. Relative ordering: an <or der i ng> element within a file in the applicationConfigurationResources

An entry in applicationConfigurationResources may have an <or der i ng> element. If so, this element must contain
zero or one <bef or e> elements and zero or one <af t er > elements. The meaning of these elements is explained
below.

Duplicate name exception: if, when traversing the constituent members of applicationConfigurationResources,
multiple members with the same <nanme> element are encountered, the application must log an informative error
message including information to help fix the problem, and must fail to deploy. For example, one way to fix this
problem is for the user to use absolute ordering, in which case relative ordering is ignored.

If an <absol ut e- or der i ng> element appears in an entry in applicationConfigurationResources, an informative
message must be logged and the element must be ignored.

Consider this abbreviated but illustrative example. faces-configA, faces-configB and faces-configC are found in
applicationConfigurationResources, while my-faces-config is the applicationFacesConfig. The principles that explain
the ordering result follow the example code.

faces-configA:.

<f aces-config>
<nanme>A</ nane>
<or deri ng><af t er ><nane>B</ nane></ af t er ></ or deri ng>
<appl i cati on>
<vi ew handl er >com a. Vi ewHandl| er | npl </ vi ew handl er >
</ appl i cation>
<lifecycle>
<phase- i st ener >com a. PhaselLi st ener | npl </ phase-1i st ener >
</lifecycle>
</ faces-config>

| 11-16 JavaServer Faces Specification « June 2009

faces-configB:.

<f aces-config>
<name>B</ name>
<appl i cati on>
<vi ew handl er >com b. Vi ewHandlI er | npl </ vi ew handl er >
</ application>
<lifecycl e>
<phase-1i st ener >com b. Phaseli st ener | npl </ phase-1i st ener >
</lifecycle>
</ faces-config>

faces-configC:.

<f aces-config>
<nanme>C</ nane>
<or deri ng><bef or e><ot hers /></bef ore></ orderi ng>
<appl i cation>
<vi ew handl er >com c. Vi ewHand! er | npl </ vi ew handl er >
</ appl i cation>
<lifecycle>
<phase-1i st ener >com c. PhaselLi st ener| npl </ phase-1i st ener >
</lifecycle>
</ faces-config>

my-faces-config:.

<faces-config>
<nanme>ny</ nane>
<appl i cati on>
<vi ew handl er >com ny. Vi ewHandl er | npl </ vi ew handl er >
</ appl i cation>
<lifecycl e>
<phase-|i st ener>com ny. PhaseLi st ener | npl </ phase-1i st ener>
</lifecycle>
</ faces-config>

In this example, the processing order for the applicationConfigurationResources and applicationFacesConfig will be.

I mpl emrent ati on Specific Config
C

B
A
ny

The preceding example illustrates some, but not all, of the following principles.[P1-start-decoratableOrdering]

= <bef or e> means the document must be ordered before the document with the name matching the name specified
within the nested <name> element.

= <aft er > means the document must be ordered after the document with the name matching the name specified
within the nested <nanme> element.

= There is a special element <ot her s /> which may be included zero or one time within the <bef or e> or
<af t er > elements, or zero or one time directly within the <absol ut e- or deri ng> elements. The <ot hers />
element must be handled as follows.

Chapter 11 Using JSF in Web Applications 11-17

« If the <bef or e> element contains a nested <ot her s />, the document will be moved to the beginning of the
list of sorted documents. If there are multiple documents stating <bef or e><ot her s />, they will all be at the
beginning of the list of sorted documents, but the ordering within the group of such documents is unspecified.

« If the <aft er > element contains a nested <ot her s />, the document will be moved to the end of the list of
sorted documents. If there are multiple documents requiring <af t er ><ot her s / >, they will all be at the end of
the list of sorted documents, but the ordering within the group of such documents is unspecified.

« Within a <bef or e> or <af t er > element, if an <ot her s / > element is present, but is not the only <nane>
element within its parent element, the other elements within that parent must be considered in the ordering process.

« If the <ot hers /> element appears directly within the <absol ut e- or der i ng> element, the runtime must
ensure that any application configuration resources in applicationConfigurationResources not explicitly named in
the <absol ut e- or deri ng> section are included at that point in the processing order.

= If a faces-config file does not have an <or der i ng> or <absol ut e- or der i ng> element the artifacts are assumed
to not have any ordering dependency.

= [f the runtime discovers circular references, an informative message must be logged, and the application must fail to
deploy. Again, one course of action the user may take is to use absolute ordering in the applicationFacesConfig.

The previous example can be extended to illustrate the case when applicationFacesConfig contains an ordering section.

my-faces-config:.

<faces-confi g>
<name>ny</ nane>
<absol ut e- orderi ng>
<nanme>C</ name>
<nanme>A</ name>
</ absol ut e- orderi ng>
<appl i cati on>
<vi ew handl er >com ny. Vi ewHandl er | npl </ vi ew handl er >
</ application>
<lifecycl e>
<phase-|i st ener>com ny. PhaseLi st ener | npl </ phase-1i st ener>
</lifecycle>
</ faces-config>

In this example, the constructor decorator ordering for Vi ewHandl er would be C, A, my.

Some additional example scenarios are included below. All of these apply to the applicationConfigurationResources
relative ordering case, not to the applicationFacesConfig absolute ordering case.

Docunent A - <after><others/><nanme>C</ nane></after>
Docunent B - <before><ot hers/></before>

Docunent C - <after><others/></after>

Docunent D - no ordering

Docunent E - no ordering

Docunment F - <bef ore><ot hers/ ><nane>B</ nane></ bef ore>

| 11-18 JavaServer Faces Specification + June 2009

The valid parse order is F, B, D/E, C, A, where D/E may appear as D, E or E, D

Docunent <no id> - <after><others/></after>
<bef or e><nanme>C</ nane></ bef or e>

Docunent B - <bef or e><ot her s/ ></ bef or e>
Docunent C - no ordering

Docunent D - <after><others/></after>
Docunment E - <before><ot hers/></before>
Docunment F - no ordering

The complete list of parse order solutions for the above example is
B,E,F,<no id>,C,D
B,E,F,<no_id>,D,C
E,B,F,<no id>,C,D
E,B,F,<no_id>,D,C
B,E,F,D,<no id>,C

E,B,F,D,<no id>,C

Docunment A - <after><name>B</nanme></after>
Docurment B - no ordering

Docunent C - <before><ot hers/></before>
Doucnent D - no ordering

Resulting parse order: C, B, D, A. The parse order could also be: C, D, B, A.

[P1-endDecoratableOrdering]

Chapter 11 Using JSF in Web Applications 11-19

11.4.8 Example Application Configuration Resource

The following example application resource file defines a custom Ul Conponent of type Dat e, plus a number of
Render er s that know how to decode and encode such a component:

<?xm version="1.0"7?>
<faces-config version="1.2" xm ns=
"http://java. sun.com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance”
xsi : schemaLocation="http://java. sun.conm xm /ns/j avaee
http://java. sun. conl xm / ns/j avaee/ web-f acesconfig_1 2. xsd">
<!-- Define our custom conponent -->
<conponent >
<descri ption>
A custom conponent for rendering user-selectable dates in
various fornats.
</ descri ption>
<di spl ay- name>My Cust om Dat e</ di spl ay- nanme>
<conponent - t ype>Dat e</ conponent -t ype>
<component - cl ass>
com exanpl e. conponent s. Dat eConponent
</ conponent - cl ass>
</ conponent >

<!-- Define two renderers that know how to deal with dates -->
<render-kit>
<!-- No render-kit-id, so add themto default RenderKit -->
<renderer>
<di spl ay- nane>Cal endar W dget </ di spl ay- nane>
<conponent - fam | y>MyConponent </ conponent -fam | y>
<renderer-type>MCal endar </ render er-type>
<renderer-cl ass>
com exanpl e. render er s. MyCal endar Render er
</renderer-cl ass>
</ renderer>
<renderer>
<di spl ay- name>Mont h/ Day/ Year </ di spl ay- nane>
<render er -t ype>Mont hDayYear </ r ender er - t ype>
<renderer-cl ass>
com exanpl e. render er s. Mont hDay Year Render er
</renderer-cl ass>
</renderer>
</render-kit>

</ faces-config>

Additional examples of configuration elements that might be found in application configuration resources are in
Section 5.3.1 “Managed Bean Configuration Example” and Section 7.4.3 “Example NavigationHandler Configuration”.

| 11-20 JavaServer Faces Specification + June 2009

11.5

11.5.1

Annotations that correspond to and may take the place of
entries in the Application Configuration Resources

An implementation must support several annotation types that take may take the place of entries in the Application

Configuration Resources. The implementation requirements are specified in this section.

Requirements for scanning of classes for annotations

= [PI_start-annotation-discovery]If the <f aces- conf i g> element in the VEB- | NF/ f aces- confi g. xnl file

contains met adat a- conpl et e attribute whose value is “t r ue”, the implementation must not perform annotation

scanning on any classes except for those classes provided by the implementation itself. Otherwise, continue as

follows.

= Ifthe runtime discovers a conflict between an entry in the Application Configuration Resources and an annotation, the
entry in the Application Configuration Resources takes precedence.

= All classes in VEB- | NF/ ¢l asses must be scanned.

= For every jar in the application's WEB- | NF/ | i b directory, if the jar contains a “META- | NF/ f aces- confi g. xm ”
file or a file that matches the regular expression “. *\ . f aces-confi g. xm ” (even an empty one), all classes in
that jar must be scanned.[P1_end-annotation-discovery]

The following table lists the annations that the implementation must support. The normative specification for each
annotation is found in its corresponding javadoc.

TABLE 111 Annotations that relate to artifacts that reside in a page

Fully Qualifiied Class Name

Description

j avax. f aces. conponent . FacesConponent

j avax. faces. convert. FacesConvert er

javax. faces. render. FacesRender er

javax. faces. val i dat or. FacesVal i dat or

Class level annotation on a class that
has Ul Conponent in its inheritance
hierarchy.

Class level annotation on a class that
has Convert er in its inheritance
hierarchy.

Class level annotation on a class that
has Render er in its inheritance
hierarchy.

Class level annotation on a class that
has Val i dat or in its inheritance
hierarchy.

Chapter 11

Using JSF in Web Applications

11-21

11-22

JavaServer Faces Specification « June 2009

12

Lifecycle Management

In Chapter 2 “Request Processing Lifecycle,” the required functionality of each phase of the request processing lifecycle
was described. This chapter describes the standard APIs used by JSF implementations to manage and execute the
lifecycle. Each of these classes and interfaces is part of the j avax. faces. | i f ecycl e package.

Page authors, component writers, and application developers, in general, will not need to be aware of the lifecycle
management APIs—they are primarily of interest to tool providers and JSF implementors.

12.1

Lifecycle

Upon receipt of each JSF-destined request to this web application, the JSF implementation must acquire a reference to
the Li f ecycl e instance for this web application, and call its execut e() and r ender () methods to perform the
request processing lifecycle. The Li f ecycl e instance invokes appropriate processing logic to implement the required
functionality for each phase of the request processing lifecycle, as described in Section 2.2 “Standard Request Processing
Lifecycle Phases”.

public void execute(FacesContext context) throws FacesException;

public void render(FacesContext context) throws FacesException;

The execut e() method performs phases up to, but not including, the Render Response phase. The r ender () method
performs the Render Response phase. This division of responsibility makes it easy to support JavaServer Faces
processing in a portlet-based environment.

As each phase is processed, registered PhaseLi st ener instances are also notified. The general processing for each
phase is as follows:

= From the set of registered PhaseLi st ener instances, select the relevant ones for the current phase, where
“relevant” means that calling get Phasel d() on the PhaseLi st ener instance returns the phase identifier of the
current phase, or the special value Phasel d. ANY_PHASE.

= Call the bef or ePhase() method of each relevant listener, in the order that the listeners were registered.

= If no called listener called the FacesCont ext . r ender Response() or
FacesCont ext . r esponseConpl et () method, execute the functionality required for the current phase.

= Call the af t er Phase() method of each relevant listener, in the reverse of the order that the listeners were
registered.

= If the FacesCont ext . r esponseConpl et e() method has been called during the processing of the current
request, or we have just completed the Render Response phase, perform no further phases of the request processing
lifecycle.

Chapter 12 Lifecycle Management 12-1

= If the FacesCont ext . r ender Response() method has been called during the processing of the current request,
and we have not yet executed the Render Response phase of the request processing lifecycle, ensure that the next
executed phase will be Render Response

public void addPhaseli st ener (PhaselLi stener |istener);

public void renpvePhaseli st ener (PhaselLi stener |istener);

These methods register or deregister a PhaseLi st ener that wishes to be notified before and after the processing of
each standard phase of the request processing lifecycle. Implementations should prevent duplicate PhaseLi st ener
registrations and log an exception if an attempt is made. The webapp author can declare a PhaseLi st ener to be added
using the phase- | i st ener element of the application configuration resources file. Please see Section 12.3
“PhaseListener”.

12.2

PhaseEvent

This class represents the beginning or ending of processing for a particular phase of the request processing lifecycle, for
the request encapsulated by the FacesCont ext instance passed to our constructor.

publ i ¢ PhaseEvent (FacesCont ext cont ext, Phaseld phaseld, Lifecycle
lifecycle);

Construct a new PhaseEvent representing the execution of the specified phase of the request processing lifecycle, on
the request encapsulated by the specified FacesCont ext instance. The Li f ecycl e instance must be the lifecycle
used by the current FacesSer vl et that is processing the request. It will serve as the sour ce of the
java.util.Event Obj ect from which PhaseEvent inherits.

publ i ¢ FacesCont ext get FacesContext();

publi ¢ Phasel d get Phasel d();

Return the properties of this event instance. The specified FacesCont ext instance will also be returned if
get Sour ce() (inherited from the base Event Cbj ect class) is called.

12.3

Phaselistener

This interface must be implemented by objects that wish to be notified before and after the processing for a particular
phase of the request processing lifecycle, on a particular request. Implementations of PhaseLi st ener must be
programmed in a thread-safe manner.

publi ¢ Phasel d get Phasel d();

| 12-2 JavaServer Faces Specification « June 2009

The PhaselLi st ener instance indicates for which phase of the request processing lifecycle this listener wishes to be
notified. If Phasel d. ANY_PHASE is returned, this listener will be notified for all standard phases of the request
processing lifecycle.

public void beforePhase(PhaseEvent event);

public void afterPhase(PhaseEvent event);

The beforePhase() method is called before the standard processing for a particular phase is performed, while the
afterPhase() method is called after the standard processing has been completed. The JSF implementation must guarantee
that, if bef or ePhase() has been called on a particular instance, then af t er Phase() will also be called, regardless
of any Exceptions that may have been thrown during the actual execution of the lifecycle phase. For example, let’s say
there are three PhaseListeners attached to the lifecycle: A, B, and C, in that order. A. bef or ePhase() is called, and
executes successfully. B. bef or ePhase() is called and throws an exception. [P1-start publishExceptionBefore] Any
exceptions thrown during the bef or ePhase() listeners must be caught and published to the Except i onHandl er,
as described below.[P1-end publishExceptionBefore] In this example, C. bef or ePhase() must not be called. Then
the actual lifecycle phase executes. Any exceptions thrown during the execution of the actual phase, that reach the
runtime code that implements the JSF lifecycle phase, [P1-start publishExceptionDuring] must be caught and and
published to the Except i onHandl er, as described below[P1-end publishExceptionDuring]. When the lifecycle phase
exits, due to an exeception or normal termination, the aft er Phase() listeners must be called in reverse order from
the bef or ePhase() listeners in the following manner. C. af t er Phase() must not be called, since

C. bef or ePhase() was not called. B. af t er Phase() must not be called, since B. bef or ePhase() did not
execute successfully. A. af t er Phase() must be called. [P1-start publishExceptionAfter]Any exceptions thrown
during the af t er Phase() liseteners must be caught and published to the Except i onHandl er, as described
below.[P1-start publishExceptionAfter]

The previous paragraph detailed several cases where exceptions should be published to the Except i on handler. [P1-
start_publishExceptionSpec] The following action must be taken by the runtime to implement this requirement as well as
an additional requirent to cause the Except i onHandl er to take action on the published Except i on(s). The
specification is shown in pseudocode. This code does not implement the before/after matching guarantees specified

Chapter 12 Lifecycle Management 12-3

above and is only intended to describe the specification for publishing and handling Except i onEvent instances that
arise from exceptions being thrown during the execution of a lifecycle phase. Methods shown in t hi sTypef ace() are
not a part of the API and are just included for discussion.

FacesCont ext facesContext = FacesContext.getCurrentlnstance();
Application app = facesContext. getApplication();
Excepti onHandl er handl er = facesContext.get Excepti onHandl er();

try {
cal | Bef or ePhaselLi st eners();

} catch (Throwabl e t hrownException) {
j avax. faces. event. Excepti onEvent Cont ext event Context =
new Excepti onEvent Cont ext (t hr ownException, null,
f acesCont ext . get Phasel d());
event Cont ext. get Attri butes(). put (Event Cont ext.| N _BEFORE_PHASE,
Bool ean. TRUE) ;
app. publ i shEvent (Excepti onEvent. cl ass, event Context);

}

try {
doCurrent Phase();

} catch (Throwabl e t hrownException) {
j avax. faces. event . Excepti onEvent Cont ext event Cont ext =
new Excepti onEvent Cont ext (t hr ownException, null,
f acesCont ext . get Phasel d());
app. publ i shEvent (Excepti onEvent. cl ass, event Context);
} finally {

try {
cal | Aft er PhaselLi steners();

} catch (Throwabl e t hrownException) {
j avax. faces. event . Excepti onEvent Cont ext event Context =
new Excepti onEvent Cont ext (t hr ownException, null,
f acesCont ext . get Phasel d());
event Cont ext. get Attri butes(). put (Event Cont ext. | N_AFTER_PHASE,
Bool ean. TRUE) ;
app. publ i shEvent (Excepti onEvent. cl ass, event Context);

}
handl er. handl e();

body text.

[P1-end_publishExceptionSpec]

PhaselLi st ener implementations may affect the remainder of the request processing lifecycle in several ways,
including:

= Calling r ender Response() on the FacesCont ext instance for the current request, which will cause control to
transfer to the Render Response phase of the request processing lifecycle, once processing of the current phase is
complete.

= Calling responseComplete() on the FacesContext instance for the current request, which causes processing of the
request processing lifecycle to terminate once the current phase is complete.

| 12-4 JavaServer Faces Specification « June 2009

12.4

LifecycleFactory

A single instance of j avax. faces. | i fecycl e. Li f ecycl eFact or y must be made available to each JSF-based
web application running in a servlet or portlet container. The factory instance can be acquired by JSF implementations or
by application code, by executing:

Li fecycl eFactory factory = (Lifecycl eFactory)
Fact or yFi nder. get Fact ory(Fact or yFi nder. LI FECYCLE_FACTORY) ;

The Li f ecycl eFact ory implementation class supports the following methods:

public voi d addLi fecycle(String |lifecycleld, Lifecycle lifecycle);

Register a new Li f ecycl e instance under the specified lifecycle identifier, and make it available via calls to the
get Li f ecycl e method for the remainder of the current web application’s lifetime.

public Lifecycle getLifecycle(String |ifecycleld);

The Li f ecycl eFact or y implementation class provides this method to create (if necessary) and return a Li f ecycl e
instance. All requests for the same lifecycle identifier from within the same web application will return the same
Li f ecycl e instance, which must be programmed in a thread-safe manner.

Every JSF implementation must provide a Li f ecycl e instance for a default lifecycle identifier that is designated by the
String constant Li f ecycl eFact ory. DEFAULT_LI FECYCLE. For advanced uses, a JSF implementation may
support additional lifecycle instances, named with unique lifecycle identifiers.

public Iterator<String> getlLifecyclelds();

This method returns an iterator over the set of lifecycle identifiers supported by this factory. This set must include the
value specified by Li f ecycl eFact ory. DEFAULT_LI FECYCLE.

Chapter 12 Lifecycle Management 12-5

12-6 JavaServer Faces Specification « June 2009

13

Ajax Integration

13.1

13.1.1

13.1.1.1

This chapter of the specification describes how Ajax integrates with the JavaServer Faces framework to create dynamic
web applications. JavaServer Faces 1.2 standardized portions of the architecture to facilitate building Web 2.0
applications with Ajax. This chapter describes the resources and JavaScript APIs that are used to expose the Ajax
capabilities of JavaServer Faces to page authors and component authors. It also describes the necessary ingredients of a
JavaServer Faces Ajax framework, namely, a resource delivery mechanism, partial tree traversal, partial page update.

JavaScript Resource

There must be a single JavaScript resource that exists with the resource identifier j sf . j s and it must exist under the
resource library j avax. f aces, following the conventions in Secti on 2.6 “Resource Handling”. This
resource contains the JavaScript APIs that facilitate Ajax interaction with JavaServer Faces.

JavaScript Resource Loading

The JavaScript resource can become available to a JavaServer Faces application using a number of different approaches.

The Annotation Approach

Component authors can specify that a custom component or renderer requires the Ajax resource with the use of the
Resour ceDependency annotation.

@resour ceDependency (nanme="jsf.js", library="javax.faces",
tar get =" head")
public class MyConponent extends U Cutput...

For more information on this approach refer to Section 2.6.2.1 “Relocatable Resources” and Section 2.6.2.2 “Resource
Rendering Using Annotations”.

Chapter 13 Ajax Integration 13-1

13.1.1.2 The Resource API Approach

Component authors can also specify that a custom component or renderer requires the JavaScript resource by using the
resource APIs. For example, a component or renderer’s encode method may contain:

Resource resource = context.getApplication().getResourceHandl er()
.createResource(“jsf.js”, “javax.faces”);

writer.startEl enent("script", component);
witer.witeAttribute("type", "text/javascript", "type");
witer.witeAttribute("src",((resource !'=null)?
resource. get Request Pat h(): "RES _NOT_FOUND'),”src”);
writer.endEl ement (“script”);

Script resources are relocatable resources (see Section 2.6.2.1 “Relocatable Resources”) which means you can control the
rendering location for these resources by setting the “target” attribute on the resource component:

public class MyConponent extends U Qutput {

getAttributes().put(“target”, “head”);

This attribute must be set before the component is added to the view. The component or renderer must also implement
the event processing method:

public void processEvent (SystenEvent event) throws
Abor t Processi ngException {
U Conponent conponent = (U Conponent) event. get Source();
FacesCont ext context = FacesContext.getCurrentlnstance();
if (conponent.getAttributes().get("target") !'=null) {
cont ext . get Vi ewRoot () . addConponent Resour ce(cont ext ,
conponent) ;

When the component is added to the view, an event will be published. This event handling method will add the
component resource to one of the resource location facets under the view root so it will be in place before rendering.

| 13-2 JavaServer Faces Specification « June 2009

13.1.1.3

The Page D eclaration Language Approach

Page authors can make the Ajax resource available to the current view using the out put Scri pt tag. For example:

<f:view content Type="text/htm />
<h: head>
<neta...
<title...
</ h: head>
<h: body>

<h: out put Scri pt name="jsf.js” library="javax. faces”
target =" body”/ >

</ h: body>

13.2

JavaScript Namespacing

JavaScript objects that are not enclosed within a namespace are global, which means they run the risk of interfering,
overriding and/or clobbering previously defined JavaScript objects. This section defines the requirements for

implementations intending to use the JavaServer Faces 2.0 JavaScript API.

The Open Ajax Alliance is an organization of leading vendors, open source projects, and companies using Ajax. Their
prime objective is to accelerate customer success with Ajax, through the use of open standards. The Open Ajax Registry
is an industry-wide Ajax registration authority managed by the OpenAjax Alliance. The Registry maintains industry-

wide lists of Ajax runtime libraries to help prevent object collisions.

There is a top level namespace j sf that is registered with the Open Ajax Alliance:

Java A ax: {

nanespaceURl : "http://ww. sun. cont',
version:"1.0",
gl obal s_to_approve: ["jsf"],
conments: "Used in the JSF 2.0 specification."”,
specificationURI:"http://ww.jcp.org/en/jsr/detail ?i d=316",
emai |l : "jsfaces@un. cont

}

[P1-start openajax registration]If the OpenAjax library is available, libraries must register themselves using
OpenAj ax. regi sterLibrary() atthe time when the JavaScript files are fetched and parsed by the browser’s

JavaScript engine.

if (typeof OpenAjax != "undefined" &&
typeof OpenAj ax. hub.registerLibrary != "undefined") {
OpenAj ax. hub. regi sterLi brary("jsf", "ww.sun.conf, "1.0",
nul ') ;
}
[P1-end]

Chapter 13 Ajax Integration 13-3

[P1-start javascript namespace]Any implementation that intends to use the JavaServer Faces 2.0 JavaScript API must
define a top level JavaScript object name j sf, whose type is a JavaScript associative array. Within that top level
JavaScript object, found in the OpenAjax Hub, there must be a property named aj ax. .

if (jsf == null || typeof jsf == "undefined") {
var jsf = new Object();

}

if (jsf.ajax == null || typeof jsf.ajax == "undefined") {
jsf["ajax"] = new vject();

}

[P1-end]

13.3

13.3.1

13.3.2

13.3.3

Ajax Interaction

This section of the specification outlines the Ajax JavaScript APIs that are used to initiate client side interactions with
the JavaServer Faces framework including partial tree traversal and partial page update. All of the functions in this
JavaScript API will be exposed on a page scoped JavaScript object. Refer to Chapter 14 “JavaScript APIfor details about
the individual API functions.

Sending an Ajax Request

The JavaScript function j sf. aj ax. request is used to send information to the server to control partial view
processing (Section 13.4.2 “Partial View Processing”) and partial view rendering (Section 13.4.3 “Partial View
Rendering”). All requests using the j sf . aj ax. request function will be made asynchronously to the server. Refer to
Section 14.2 “Initiating an Ajax Request”.

Ajax Request Queueing

[P1-start-ajaxrequest-queue] All Ajax requests must be put into a client side request queue before they are sent to the
server to ensure Ajax requests are processed in the order they are sent. The request that has been waiting in the queue the
longest is the next request to be sent. After a request is sent, the Ajax request callback function must remove the request
from the queue (also known as dequeuing). If the request completed successfully, it must be removed from the queue. If
there was an error, the client must be notified, but the request must still be removed from the queue so the next request
can be sent. The next request (the oldest request in the queue) must be sent. Refer to the j sf. aj ax. r equest
JavaScript documentation for more specifics about the Ajax request queue.[P1-end]

Request Callback Function

The Ajax request callback function is called when the Ajax request/response interaction is complete. [P1-start-
callback]This function must perform the following actions:

= [f the return status is >= 200 and < 300, send a “complete” event following Section 13.3.5.3 “Sending Events”. Call
j sf. aj ax. response passing the Ajax r equest object (for example the XMLHttpRequest instance) and the
request cont ext (containing the sour ce DOM element, onevent event function callback and onerror error
function callback).

| 13-4 JavaServer Faces Specification « June 2009

13.3.4

13.3.5

13.3.5.1

13.3.5.2

13.3.5.3

= [f the return status is outside the range mentioned above, send a “complete” event following Section 13.3.5.3
“Sending Events”. Send an “httpError” error following Section 13.3.6.3 “Signaling Errors”.

= Regardless of whether the request completed successfully or not:

« remove the completed requests (Ajax readystate 4) from the request queue (dequeue) - specifically the requests
that have been on the queue the longest.

= find the next oldest unprocessed (Ajax readystate 0) request on the queue, and send it. The implementation must

ensure that the request that is sent does not enter the queue again.[P1-end]

Refer to Section 13.3.4 “Receiving The Ajax Response”. Also refer to the j sf. aj ax. request JavaScript
documentation for more specifics about the request callback function.

Receiving The Ajax Response

The j sf. aj ax. response function is responsible for examining the markup that is returned from the server and
updating the client side DOM. The Ajax request callback function should call this function when a request completes
successfully. [P1-start-ajaxresponse]The implementation of j sf . aj ax. r esponse must handle the response as outlined
in the JavaScript documentation for j sf . aj ax. response. The elements in the response must be processed in the
order they appear in the response.[P1-end]

Monitoring Events On The Client

JavaScript functions can be registered to be notified during various stages of the Ajax request/response cycle. Functions
can be set up to monitor individual Ajax requests, and functions can also be set up to monitor all Ajax requests.

Monitoring Events For An Ajax Request

There are two ways to monitor events for a single Ajax request by registering an event callback function:

= By using the <f: aj ax> tag with the onevent attribute.

= By using the JavaScript API function j sf. aj ax. request with onevent as an option.

Refer to Section 10.4.1.1 “<f:ajax>" for details on the use of the <f : aj ax> tag approach. Refer to Section 14.2
“Initiating an Ajax Request” for details about using the j sf. aj ax. r equest function approach. [P1-start-event-

request]The implementation must ensure the JavaScript function that is registered for an Ajax request must be called in
accordance with the events outlined in Section TABLE 14-3 “Events”.[P1-end]

Monitoring Events For All Ajax Requests

The JavaScript API provides the j sf . aj ax. addOnEvent function that can be used to register a JavaScript function
that will be notified when any Ajax request/response event occurs. Refer to Section 14.4 “Registering Callback
Functions” for more details. The j sf . aj ax. addOnEvent function accepts a JavaScript function argument that will be
notified when events occur during any Ajax request/response event cycle. [P1-start-event] The implementation must
ensure the JavaScript function that is registered must be called in accordance with the events outlined in

Section TABLE 14-3 “Events”.[P1-end]

Sending Events

[P1-start-event-send]| The implementation must send events to the runtime as follows:

= Construct a data payload for events using the properties described in Section TABLE 14-4 “Event Data Payload”.

Chapter 13 Ajax Integration 13-5

13.3.6

13.3.6.1

13.3.6.2

13.3.6.3

= [f an event handler function was registered with the “onevent” attribute (Section 13.3.5.1 “Monitoring Events For An
Ajax Request”) call it passing the data payload.

= Ifany event handling functions were registered with the “addOnEvent” function (Section 13.3.5.2 “Monitoring Events
For All Ajax Requests”) call them passing the data payload.[P1-end]

Handling Errors On the Client

JavaScript functions can be registered to be notified when Ajax requests complete with error status codes from the server
to give implementations a chance to handle the errors. Functions can be set up to handle errors from individual Ajax
requests and functions can be setup to handle errors for all Ajax requests.

Handling Errors For An Ajax Request

There are two ways to handle errors for a single Ajax request by registering an error callback function:

= By using the <f : aj ax> tag with the onerror attribute.

= By using the JavaScript API function j sf. aj ax. request with onerror as an option.

Refer to Section 10.4.1.1 “<f:ajax>" for details on the use of the <f : aj ax> tag approach. Refer to Section 14.2
“Initiating an Ajax Request” for details about using the j sf. aj ax. request function approach. [P1-start-event-

request]The implementation must ensure the JavaScript function that is registered for an Ajax request must be called in
accordance when the request status code from the server is as outlined in Section TABLE 14-5 “Errors”.[P1-end]

Handling Errors For All Ajax Requests

The JavaScript API provides the j sf . aj ax. addOnError function that can be used to register a JavaScript function
that will be notified when an error occurs for any Ajax request/response. Refer to Section 14.4 “Registering Callback
Functions” for more details. The j sf . aj ax. addOnErr or function accepts a JavaScript function argument that will be
notified when errors occur during any Ajax request/response cycle. [P1-start-event] The implementation must ensure the
JavaScript function that is registered must be called in accordance with the errors outlined in Section TABLE 14-5
“Errors”.[P1-end]

Signaling Errors

[P1-start-error-signal | The implementation must signal errors to the runtime as follows:
= Construct a data payload for errors using the properties described in Section TABLE 14-6 “Error Data Payload”.

= [f an error handler function was registered with the “onerror” attribute (Section 13.3.6.1 “Handling Errors For An
Ajax Request”) call it passing the data payload.

= If any error handling functions were registered with the “addOnError” function (Section 13.3.6.2 “Handling Errors
For All Ajax Requests”) call them passing the data payload.

= If the project stage is “development” (see Section 14.5 “Determining An Application’s Project Stage”) use JavaScript
“alert” to signal the error(s).[P1-end]

| 13-6 JavaServer Faces Specification « June 2009

13.3.7

Handling Errors On The Server

JavaServer Faces handles exceptions on the server as outlined in Section 6.2 “ExceptionHandler”. [P1-start-error-
server]JavaServer Faces Ajax frameworks must ensure exception information is written to the response in the format:

<partial -response>
<error>
<error-nane>...</error-nane>
<error-nessage>...</error-nessage>
</error>
</ partial -response>

= Extract the “class” from the “Throwable” object and write that as the contents of err or - name in the response.

= Extract the “cause” from the “Throwable” object if it is available and write that as the contents of er r or - nessage
in the response. If “cause” is not available, write the string returned from “Throwable.getMessage()”.

Implementations must ensure that an ExceptionHandler suitable for writing exceptions to the partial response is installed
if the current request required an Ajax response (PartialViewContext.isAjaxRequest() returns true).[P1-end]

Implementations may choose to include a specialized ExceptionHandler for Ajax that extends from
j avax. f aces. cont ext . Except i onHandl er W apper, and have the
j avax. f aces. cont ext . Except i onHandl er Fact ory implementation install it if the environment requires it.

13.4

Partial View Traversal

The JavaServer Faces lifecycle, can be viewed as consisting of an execut e phase and a r ender phase.

Response Response
Comph
‘.F?P.'!“.?’.‘.‘.?..., ‘.L.'i!‘."’.‘.?le. —p
Faces
Request Restore Apply Request Process Process Process
I View Yalues Events validations [T Events
! execute
Render Refponse H . .
portion of Lifecycle
Respdnse Response
Compl=te Complete
P o el
v H H
Faces
Response Render Process | Invvoke Process Update Mocled
Events [T1] Appication [* Events [vaues
T
render
portion of Lifecycle — ComversionErors : i
| L o Rendpr Response v Validation f Conversion |

w Errors { Render Response |
L S ——

Partial traversal is the technique that can be used to “visit” one or more components in the view, potentially to have them
pass through the “execute” and/or “render” phases of the request processing lifecycle. This is a key feature for JSF and
Ajax frameworks and it allows selected components in the view to be processed and/or rendered. There are a variety of
JSF Ajax frameworks available, and they all perform some variation of partial traversal.

Chapter 13 Ajax Integration 13-7

13.4.1

13.4.2

13.4.3

13.4.4

Partial Traversal Strategy

Frameworks use a partial traversal strategy to perform partial view processing and partial view rendering. This
specification does not dictate the use of a specific partial traversal strategy. However, frameworks must implement their
desired strategy by implementing the PartialViewContext.processPartial method. Refer to the JavaDocs for details about
this method.

Partial View Processing

Partial view processing allows selected components to be processed through the “execute” portion of the lifecycle.
Although the diagram in Section 13.4 “Partial View Traversal” depicts the “execute” portion as encompassing everything
except the “Render Response Phase”, it really is the “Apply Request Values Phase”, “Update Model Values Phase” and
“Process Validations Phase”. Partial view processing on the server is triggered by a request from the client. The request
does not have to be an Ajax request. The request contains special parameters that indicate the request is a partial
execut e request or a partial execut e request that was triggered using Ajax. The client also sends a set of client ids
of the components that must be processed through the execut e phase of the request processing lifecycle. Refer to
Section 13.3.1 “Sending an Ajax Request” about the request sending details. The FacesCont ext has methods for
retrieving the Par ti al Vi ewCont ext instance for the request. The Parti al Vi ewCont ext has properties and
methods that indicate the request is a partial request based on the values of these special request parameters. Refer to the
JavaDocs for javax.faces.context.Partial ViewContext and Section 6.1.11 “Partial View Context” for the specifics of the
Parti al Vi ewCont ext constants and methods that facilitate partial processing. [P1-start-partialExec]The

Ul Vi ewRoot processDecodes, processValidators and processUpdates methods must determine if the
request is a partial request using the FacesCont ext . i sParti al Request () method. If

FacesCont ext . i sPartial Request () returns true, then the implementation of these methods must retrieve a
Parti al Vi enCont ext instance and invoke Parti al Vi ewcont ext. processPartial. Refer to

Section 2.2.2 “Apply Request Values”, Section 2.2.2.1 “Apply Request Values Parti al
Processing”, Section 2.2.3 “Process Validations”, Section 2.2.3.1 “Partial Validations
Partial Processing”, Section 2.2.4 “Update Mdel Values”, Section 2.2.4.1 “Update Model
Val ues Partial Processing”.[Pl-end]

Partial View Rendering

Partial view rendering on the server is triggered by a request from the client. It allows one or more components in the
view to perform the encoding process. The request contains special parameters that indicate the request is a partial
render request. The client also sends a set of client ids of the components that must be processed by the r ender
phase of the request processing lifecycle. Refer to Section 13.3.1 “Sending an Ajax Request” about the request sending
details. The FacesCont ext has methods that indicate the request is a partial request based on the values of these
special request parameters. Refer to Section 6.1.10 “Partial Processing Methods” for the specifics of the FacesCont ext
constants and methods that facilitate partial processing. [P1-start-partialRender]The Ul Vi ewRoot

get Render sChi | dren and encodeChi | dr en methods must determine if the request is an Ajax request using the
FacesCont ext . i sAj axRequest () method. If FacesCont ext . i SAj axRequest () returns true, then the

get Render sChi | dr en method must return t r ue and the encodeChi | dr en method must perform partial rendering
using the Parti al Vi enCont ext . processParti al implementation. Refer to the JavaDocs for

Ul Vi ewRoot . encodeChi | dr en for specific details.[P1-end]

Sending The Response to The Client

The Ajax response (also known as partial response) is formulated and sent to the client during the Render Response
phase of the request processing lifecycle. The partial response consists of markup rendered by one or more components.
The response should be in a common format so JavaScript clients can interpret the markup in a consistent way - an
important requirement for component compatability. The agreed upon format and content type for the partial response is
XML. This means there should be a ResponseW it er suitable for writing the response in XML. The

| 13-8 JavaServer Faces Specification « June 2009

13.4.4.1

Ul Vi ewRoot . encodeChi | dren method delegates to a partial traversal strategy. The partial traversal strategy
implementation produces the partial response. The markup that is sent to the client must contain elements that the client
can recognize. In addition to the markup produced by server side components, the response must contain “instructions”
for the client to interpret, so the client will know, for example, that it is to add new markup to the client DOM, or update
existing areas of the DOM. When the response is sent back to the client, it must contain the view state. [P1-start-sending-
response]Implementations must adhere to the response format as specified in the JavaScript docs for
jsf.ajax.response.[P1-end] Refer to the XML schema definition in the Section 1.3 “XML Schema Definition for Partial
Responses” section. This XML schema is another important area for component library compatability.

Writing The Partial Response

JavaServer Faces provides j avax. f aces. cont ext. Parti al ResponseW it er to ensure the Ajax response that is
written follows the standard format as specified in Section 1.3 “XML Schema Definition for Partial Responses”.
Implementations must take care to properly handle nested CDATA sections when writing the response.

Parti al ResponseWiter decorates an existing ResponseWriter implementation by extending

j avax. f aces. cont ext . ResponseWiter Wapper. Refer to the

javax. faces. context. Parti al ResponseWiter JavaDocs, and the JavaScript documentation for the

j sf. aj ax. response function for more specifics.

Chapter 13 Ajax Integration 13-9

13-10

JavaServer Faces Specification « June 2009

14

JavaScript API

This chapter of the specification describes the JavaScript functions that are used to facilitate Ajax operations in a
JavaServer Faces framework. All of these functions are contained in the canonical j sf . j s file.

14.1

14.1.1

Collecting and Encoding View State

In JavaServer Faces 1.2 the j avax. f aces. Vi ewSt at e parameter was standardized to facilitate “postback” requests to
the server in a JavaServer Faces application. Implementations must use this parameter to save the view state between
requests. Refer to the Javadocs for j avax. f aces. render . ResponseSt at eManager .

Collecting and encoding view state that will be sent to the server is a common operation used by most JavaServer Faces
Ajax frameworks. When a JavaServer Faces view is rendered, it will contain a hidden field with the identifier

j avax. faces. Vi ewSt at e whose value contains the state for the current view. JSF Ajax clients collect additional
view state, combine it with the current view state and send it’s encoded form to the server.

j sf. get Vi ewSt at e(FORM_ELEMENT)

Collect and encode element data for the given FORM _ELEMENT and return it as the view state that will be sent to the
server. FORM_ELEMENT is the identifier for a DOM form element. All input elements of type “hidden” should be
included in the collection and encoding process.

= Encode the name and value for each input element of FORM ELEMENT. Only select elements that have at least one
of their options selected must be included. only checkbox elements that are checked must be included.

= Find the element identified as j avax. f aces. Vi ewSt at e in the specified FORM_ELEMENT and encode the name
and value.

= Return a concatenated String of the encoded input elements and j avax. f aces. Vi ewSt at e element.

Use Case

Collect and Encode Elements Of a Form

var viewState = jsf.getViewState(form;

Chapter 14 JavaScript APl 14-1

14.2

14.2.1

Initiating an Ajax Request

j sf.aj ax. request (source, |event|, { |OPTIONS| });

The j sf. aj ax. request function is responsible for sending an Ajax request to the server. [P1-start-ajaxrequest]The
requirements for this function are as follows:

= The request must be sent asynchronously

= The request must be sent with method type POST

= The request URL will be the f orm acti on attribute

= All requests will be queued with the use of a client side request queue to help ensure request ordering
= [Pl-end]

Usage

Typically, this function is attached as a JavaScript event handler (such as “onclick”).

<ANY_HTM._OR _JSF_ELEMENT
on| EVENT| ="j sf. aj ax. request (source, event,
{ |OPTIONS| });" />

The function arguments are as follows:

sour ce is the DOM element that triggered this Ajax request. [P1-start-source]lt must be a DOM element object or a
string identifier for a DOM element. [P1-end]The event argument is the JavaScript event object. The optional
|OPTI ONS| argument is a JavaScript associative object array that may contain the following name/value pairs:

TABLE 14-1 request OPTI ONS

Name Value

execute A space delimited list of client identifiers or one of the keywords
(Section 14.2.2 “Keywords”). These reference the components that will be
processed during the “execute” phase of the request processing lifecycle.

render A space delimited list of client identifiers or one of the keywords
(Section 14.2.2 “Keywords”). These reference the components that will be
processed during the “render” phase of the request processing lifecycle.

onevent A String that is the name of the JavaScript function to call when an event
occurs.

onerror A String that is the name of the JvaScript function to call when an error
occurs.

params An object that may include additional parameters to include in the request.

| 14-2 JavaServer Faces Specification « June 2009

14.2.2

14.2.3

14.2.4

Keywords

The following keywords can be used for the value of the “execute” and “render” attributes:

TABLE 14-2 Execute / Render Keywords

Keyword Description

@all All component identifiers

(@none No identifiers

@this The element that triggered the request
@form The enosing form

Default Values

Values for the execut e and render attributes are not required. When using the JavaScript API, the default values
for execute is @his. The default value for render is @one.

<h: cormandButton i d="buttonl” val ue="submt”>
onclick="jsf.ajax.request(this,event);" />

is the sane as:

<h: comandButton i d="buttonl” val ue="submt”>
oncl i ck="j sf. aj ax. request (this, event,
{execute:’ @his’,render:’ @his' });" />

<h: commandButton i d="buttonl” val ue="submt”>
onclick="jsf.ajax.request(this,event, {execute:’@his });" />
is the same as:

<h: commandBut ton i d="buttonl” val ue="submt”>
onclick="jsf.ajax.request(this,event, {execute:’buttonl’});" />

Refer to Section 10.4.1.1 “<f:ajax>" for the default values for the execut e and render attributes when they are
used with the core “<f:ajax>" tag.

Request Sending Specifics

The mechanics of sending an Ajax request becomes very important to promote component compatability. Even more
important, is standardizing on the post data that is sent to server implementations, so they all can expect the same
arguments. [P1-start-ajaxrequest-send]The request header must be set with the name Faces- Request and the value
partial / aj ax. Specifics of formulating post data and sending the request must be followed as outlined in the
JavaScript documentation for the j sf. aj ax. request function. The post data arguments that must be sent are:

Name Value

javax..faces.ViewState = The value of the javax.faces.ViewState hidden field. This is included when
using the jsf.getViewState function.

javax.faces.partial.ajax true

javax.faces.source The identifier of the element that is the source of this request

Chapter 14 JavaScript APl 14-3

= [Pl-end]

14.2.5 Use Case

<h: commandbutton i d="submit" val ue="submt"
onclick="jsf.ajax.request(this, event,
{execute:'subnit',render:'outtext'}); return false;" />

This use case assumes there is another component in the view with the identifier out t ext .

14.3 Processing The Ajax Response

j sf . aj ax. response(request, context);

The j sf. aj ax. response function is called when a request completes successfully. This typically means that returned
status code is >= 200 and < 300. The j sf. aj ax. response function must extract the XML response from the
request argument. The XML response is expected to follow the format that is outlined in the JavaScript
documentation for this function. The response format is an “instruction set” telling this function how it should update the
DOM. The cont ext argument contains properties that facilitate event and error processing such as the source DOM
element (the DOM element that triggered the Ajax request), onevent (the event handling callback for the request) and
onerror (the error handling callback for the request). [P1-start-ajaxresponse] The specifics details of this function’s
operation must follow the j sf. aj ax. response JavaScript documentation.[P1-end]

14.4 Registering Callback Functions

The JavaScript API allows you to register callback functions for Ajax request/response event monitoring and error
handling. The event callbacks become very useful when monitoring request connection status. The error callback
provides a convenient way for implementions to trap errors. The handling of the errors is left up to the implementation.
These callback function names can also be set using the JavaScript API (Section TABLE 14-1 “request OPTIONS”), and
the core <f:ajax> tag (Section 10.4.1.1 “<f:ajax>").

| 14-4 JavaServer Faces Specification « June 2009

14.4.1

14.4.1.1

Request/Response Event Handling

j sf . aj ax. addOnEvent (cal | back) ;

The cal | back argument must be a reference to an existing JavaScript function that will handle the events. The events
that can be handled are:

TABLE 14-3 Events

Event Name Description

begin Occurs immediately before the request is sent.

success Occurs immediately after jsf.ajax.response has completed.
complete Occurs immediately after the request has completed. For successful

requests, this is immediately before javax.faces.response is called. For
unsuccessful requests, this is immediately before the error handling
callback is invoked.

The callback function has access to the following “data payload”:.

TABLE 14-4 Event Data Payload

Name Description/Value

type “event”

status One of the events specified in TABLE 14-3

source The DOM element that triggered the Ajax request.

responseCode Ajax request object ‘status’ (XMLHttpRequest.status); Not present
for “begin” event;

responseXML The XML response (XMLHttpRequest.responseXML); Not
present for “begin” event;

responseText The text response (XMLHttpResponse.responseTxt) Not present
for “begin” event;

Use Case

j sf . aj ax. addOnEvent (st at usUpdat e) ;

var statusUpdate = function statusUpdate(data) {
do sonething with “data payl oad”

Chapter 14 JavaScript API

14-5

14.4.2

14.4.2.1

Error Handling

j sf . aj ax. addOnError (cal | back) ;

The cal | back argument must be a reference to an existing JavaScript function that will handle errors from the server.

TABLE 14-5 Errors

Error Name Description

httpError request status==null or request.status==undefined or request.status<200 or
request.status >=300

serverError The Ajax response contains an “error” element.

malformed XML The Ajax response does not follow the proper format. See Section 1.3
“XML Schema Definition for Partial Responses”

emptyResponse There was no Ajax response from the server.

The callback function has access to the following “data payload”:.

TABLE 14-6 Error Data Payload

Name Description/Value

type “error”

status One of error names defined TABLE 14-5

description Text describing the error

source The DOM element that triggered the Ajax request.
responseCode Ajax request object ‘status’ (XMLHttpRequest.status);
responseXML The XML response (XMLHttpRequest.responseXML)
responseText The text response (XMLHttpResponse.responseTxt)
errorName The error name taken from the Ajax response “error” element.
errorMessage The error messages taken from the Ajax response “error” element.
Use Case

j sf. aj ax. addOnError (handl eError);

var handl eError = function handl eError(data) {
do sonething with “data payl oad”

| 146

JavaServer Faces Specification « June 2009

14.5 Determining An Application’s Project Stage

j sf.get ProjectStage();

[P1-start-projStage]This function must return the constant representing the current state of the running application in a
typical product development lifecycle. The returned value must be the value returned from the server side method
javax. faces. application. Application. get Project Stage(); Refer to Section 7.1.8 “ProjectStage
Property” for more details about this property.[P1-end]

14.5.1 Use Case

var projectStage = javax.faces. Aj ax. get Proj ect St age();

if (projectStage == “Production”) {
throw exception
else if (projectStage == “Devel oprment”) {

send an alert for debugging

14.6 Script Chaining

jsf.util.chain(source, event, |<script> <script>...]|)

This utility function invokes an arbitrary number of scripts in sequence. If any of the scripts return false, subsequent
scripst will not be executed. The arguments are:

= source - The DOM element that triggered this Ajax request, or an id string of the element to use as the triggering
element.

= event - The DOM event that triggered this Ajax request. A value does not have to be specified for this argument.

The variable number of script arguments follow the source and event arguments. Refer to the JavaScript API
documentation in the source for more details.

Chapter 14 JavaScript APl 14-7

14-8 JavaServer Faces Specification « June 2009

Appendix A - JSF Metadata

This chapter lists the latest XML Schema definition and Document Type Definition for JSF metadata and config files.

1.1 XML Schema Definition for Application Configuration
Resource file

<xsd: schema
t ar get Nanespace="http://java. sun. conl xm / ns/j avaee"
xm ns:javaee="http://java. sun. com xm / ns/j avaee"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: xm ="http://ww. w3. or g/ XM_/ 1998/ nanespace"
el ement For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed"
version="2.0">

<xsd: annot ati on>
<xsd: docunent at i on>
$Id: web-facesconfig_2_0.xsd,v 1.1.8.2 2008/03/20 21:12:50 edburns Exp $
</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: annot ati on>

<xsd: docunent ati on>

Copyright 2007 Sun M crosystens, |nc.
901 San Antoni o Road,

Palo Alto, California 94303, U S A
Al'l rights reserved.

Sun M crosystens, Inc. has intellectual property

rights relating to technol ogy described in this docunment. In
particular, and without limtation, these intellectual
property rights may include one or nore of the U S. patents

Chapter A Appendix A - JSF Metadata A-1

listed at http://ww. sun. conf patents and one or nore
addi tional patents or pending patent applications in the
U S. and other countries.

Thi s docunment and the technol ogy which it describes are
distributed under licenses restricting their use, copying
di stribution, and deconpilation. No part of this docunent
may be reproduced in any form by any means without prior
witten authorization of Sun and its licensors, if any.

Third-party software, including font technol ogy, is
copyrighted and |icensed from Sun suppliers.

Sun, Sun M crosystens, the Sun logo, Solaris, Java, Java EE
JavaServer Pages, Enterprise JavaBeans and the Java Coffee
Cup logo are trademarks or registered tradenarks of Sun

M crosystems, Inc. in the U S. and other countries.

Federal Acquisitions: Commercial Software - Government Users
Subj ect to Standard License Terns and Conditi ons.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: annot ati on>

<xsd: docunent ati on>

<! [CDATA[

The XM. Schena for the JavaServer Faces Application
Configuration File (Version 2.0).

Al'l JavaServer Faces configuration files nust indicate
the JavaServer Faces schema by indicating the JavaServer
Faces namespace

http://java. sun. conl xm / ns/j avaee

and by indicating the version of the schema by
using the version el enent as shown bel ow

<faces-config xm ns="http://java. sun.conl xm /ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="..."
version="2.0">

A-2 JavaServer Faces Specification « June 2009

</ faces-config>

The instance docunents nay indicate the published
version of the schema using xsi:schemaLocation attribute

for javaee nanmespace with the follow ng | ocation:

http://java. sun. conl xm / ns/j avaee/ web-facesconfig 2 0. xsd

11>

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: i ncl ude schenaLocati on="j avaee_5. xsd"/>

<|__ Rk I O O I >

<xsd: el ement nanme = "faces-config" type="javaee:faces-configType">
<xsd: annot at i on>
<xsd: docunent ati on>

The "faces-config" elenment is the root of the configuration
informati on hierarchy, and contains nested el enents for al

of the other configuration settings.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: uni que nane="faces-confi g-behavi or-1D- uni queness" >
<xsd: annot ati on>

<xsd: docunent ati on>

Behavi or I Ds nmust be unique within a docunent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sel ector xpat h="j avaee: behavi or"/>
<xsd: field xpat h="j avaee: behavi or-id"/>

</ xsd: uni que>

<xsd: uni que nane="faces-config-converter-I| D uni queness">
<xsd: annot at i on>
<xsd: document at i on>

Chapter A Appendix A - JSF Metadata

A-3

Converter |IDs must be unique within a docunent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sel ect or xpat h="j avaee: converter"/>
<xsd: field xpat h="j avaee: converter-id"/>
</ xsd: uni que>

<xsd: uni que nane="faces-config-converter-for-class-uni queness">
<xsd: annot at i on>

<xsd: docunent ati on>

"converter-for-class' elenment val ues nust be uni que
wi thin a docunent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sel ect or xpat h="j avaee: converter"/>
<xsd: field xpat h="j avaee: converter-for-class"/>
</ xsd: uni que>

<xsd: uni que nane="faces-config-validator-I|D uni queness">
<xsd: annot at i on>

<xsd: docunent ati on>

Val idator |IDs nust be unique within a docunent.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpat h="j avaee: validator"/>
<xsd:field xpat h="j avaee: val i dator-id"/>

</ xsd: uni que>

<xsd: uni que nane="faces-confi g- managed- bean- name- uni queness" >
<xsd: annot ati on>

<xsd: docunent ati on>

Managed bean names nust be unique within a docunent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

A-4 JavaServer Faces Specification « June 2009

<xsd: sel ect or xpat h="j avaee: nanaged- bean"/ >
<xsd:field xpat h="j avaee: managed- bean- nane"/ >
</ xsd: uni que>
</ xsd: el ement >

<|__ R I O S >

<xsd: conpl exType name="faces-confi gType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "faces-config" elenment is the root of the configuration
informati on hierarchy, and contains nested el enents for al
of the other configuration settings.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: choi ce mi nQccurs="0" maxCccur s="unbounded" >
<xsd: el ement nane="application"
type="j avaee: faces-confi g-applicationType"/>
<xsd: el ement nane="ordering"
type="j avaee: faces-confi g-orderi ngType"/ >
<xsd: el ement nane="absol ut e-orderi ng"
type="j avaee: f aces- confi g- absol ut eOr deri ngType"
m nCccur s="0"
maxCccurs="1"/>
<xsd: el ement nanme="factory"
type="j avaee: f aces-confi g-factoryType"/>
<xsd: el enent nane="conponent "
type="j avaee: f aces- confi g- conponent Type"/ >
<xsd: el ement name="converter"
type="j avaee: f aces- confi g- converter Type"/>
<xsd: el enent nane="nmanaged- bean"
type="j avaee: f aces- confi g- nanaged- beanType"/ >
<xsd: el ement name="nane"
type="j avaee:java-identifierType"
m nCccur s="0"
maxCccurs="1">
<xsd: annot at i on>

<xsd: docunent ati on>

The "nanme" element within the top | evel "faces-config"
el ement declares the name of this application
configuration resource. Such nanes are used

Chapter A Appendix A - JSF Metadata

A-5

in the docunent ordering schene specified in section
JSF. 11. 4. 6.

</ xsd: docunent at i on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

el ement

el ement

el ement

el emrent

el ement

el ement

el emrent

</ xsd: choi ce>

nane="navi gati on-rul e"

type="j avaee: f aces- confi g- navi gati on-rul eType"/ >
nane="r ef er enced- bean"

type="j avaee: f aces- confi g-ref erenced- beanType"/ >
nanme="render-kit"

type="j avaee: f aces-confi g-render-kit Type"/>
nane="1lifecycl e"

type="j avaee: faces-config-Ilifecycl eType"/>
nane="val i dat or "

type="j avaee: f aces- confi g-val i dat or Type"/ >
nanme="behavi or "

type="j avaee: f aces- confi g- behavi or Type"/ >
nane="f aces- confi g- ext ensi on"

type="j avaee: f aces- confi g- ext ensi onType"

m nCccur s="0"

maxCccur s="unbounded"/ >

<xsd: attribute nane="net adat a- conpl et e"

type="xsd: bool ean"

use="optional ">

<xsd: annot ati on>

<xsd: docunent ati on>

The net adat a-conpl ete attribute defines whether this

JavaServer Faces application is conplete, or whether

the class files available to this nodul e and packaged with

this application should be exam ned for annotations

t hat

speci fy configuration information

This attribute is only inspected on the application

configuration resource file located at "WEB-1NF/faces-config.xm".

The presence of this attribute on any application configuration

resource other than the one |ocated at

"WEB- | NF/ f aces-config. xm ",

including any files named using the javax.faces. CONFI G FI LES

attribute, nust be ignored

If nmetadata-conplete is set to "true", the JavaServer Faces

runtime must ignore any annotations that specify configuration

A-6 JavaServer Faces Specification « June 2009

i nformati on, which mght be present in the class files
of the application.

I f nmetadata-conplete is not specified or is set to

"fal se", the JavaServer Faces runtinme nust exam ne the cl ass
files of the application for annotations, as specified by
the specification

If "WEB-1NF/faces-config.xm" is not present, the JavaServer
Faces runtinme will assune netadata-conplete to be "false"

The value of this attribute will have no inpact on
runtime annotations such as @Resour ceDependency or
@.i st ener For .
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute nane="id" type="xsd:ID' />
<xsd: attribute nane="version"
type="j avaee: f aces-confi g-versi onType"
use="required"/ >
</ xsd: conpl exType>

<|__ Rk S R O S Sk R R S Sk S kS A R R S S R o - >

<xsd: conpl exType nane = "faces-confi g-extensi onType">
<xsd: annot ati on>

<xsd: docunent ati on>

Extensi on el enment for faces-config. It may contain
i mpl ement ati on specific content.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

Chapter A Appendix A - JSF Metadata A-7

<|__ R S S S O >

<xsd: conpl exType nane="faces-confi g-orderi ngType">
<xsd: annot ati on>
<xsd: docurent at i on>

Pl ease see section JSF.11.4.6 for the specification of this el enent.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="after"
type="j avaee: f aces-confi g- orderi ng-orderi ngType"
m nCccur s="0"
maxQccur s="1"/>
<xsd: el ement name="bef ore"
type="j avaee: f aces-confi g- orderi ng-orderi ngType"
m nCccur s="0"
maxQccur s="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nane="faces-confi g-ordering-orderingType">
<xsd: annot ati on>
<xsd: docurent ati on>

RELEASE_PENDI NG (edburns, rogerk) revi ew docs

This el enent contains a sequence of "id" elenments, each of which
refers to an application configuration resource by the "id"

declared on its faces-config elenent. This elenent can al so contain
a single "others" el enent which specifies that this docunent cones

before or after other documents within the application.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement nanme="nanme" type="javaee:java-identifierType" m nCQccurs="0"
maxQccur s="unbounded"/ >
<xsd: el ement nanme="ot hers" type="javaee:faces-config-ordering-othersType"
m nCccurs="0" maxCccurs="1" />

</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType name="faces-confi g-orderi ng- ot hersType">

| A-8 JavaServer Faces Specification « June 2009

<xsd: annot ati on>
<xsd: docunent ati on>

Thi s el enent indicates that the ordering sub-element in which
it was placed should take special action regarding the ordering
of this application resource relative to other

application configuration resources. See section JSF.11.4.6

for the conplete specification

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S I O S Sk R R S ok S b S R R R R S R - >

<xsd: conpl exType nane="faces-confi g- absol ut eOr deri ngType" >
<xsd: annot at i on>
<xsd: docunent ati on>

Only relevant if this is placed within the /WEB-INF/faces-config.xm .
Pl ease see section JSF.11.4.6 for the specification for details.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el ement name="nane" type="j avaee:java-identifierType" m nCccurs="0"
maxCccur s="unbounded"/ >
<xsd: el ement name="ot hers" type="javaee: faces-config-ordering-othersType"
m nCccurs="0" maxCccurs="1" />

</ xsd: choi ce>
</ xsd: conpl exType>

<|__ Rk I kb R IR I S S b S I SRR R S >

<xsd: conpl exType nane="faces-confi g-applicati onType">
<xsd: annot ati on>
<xsd: docunent ati on>

The "application" element provides a nmechanismto define the

various per-application-singleton inmplementation artifacts for

Chapter A Appendix A - JSF Metadata

A-9

a particular web application that is utilizing
JavaServer Faces. For nested elenments that are not specified
the JSF inpl ementation nust provide a suitable default.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el ement name="action-1|istener"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "action-listener" elenent contains the fully
qualified class name of the concrete

ActionLi stener inplenentation class that will be
call ed during the Invoke Application phase of the
request processing lifecycle.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="default-render-kit-id"
type="j avaee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The "default-render-kit-id" elenment allows the
application to define a renderkit to be used other
than the standard one

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="message- bundl e"
type="j avaee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The base nanme of a resource bundle representing
t he nmessage resources for this application. See
the JavaDocs for the "java.util.ResourceBundl e"
class for nore information on the syntax of
resource bundl e names.

A-10 JavaServer Faces Specification + June 2009

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="navi gati on- handl er"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "navi gation-handler" el ement contains the
fully qualified class nane of the concrete

Navi gat i onHandl er inpl ementation class that will
be call ed during the Invoke Application phase
of the request processing lifecycle, if the
default ActionListener (provided by the JSF

i mpl enentation) is used.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="partial -traversal"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "partial -traversal" elenent contains the fully
qualified class name of the concrete

Parti al Traversal inplenentation class that will be
called during the "execute" and "render" phases of the
request processing lifecycle.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="vi ew handl er"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "view handl er"” element contains the fully
qual i fied class name of the concrete Vi ewHandl er
impl enentation class that will be called during
the Restore View and Render Response phases of the
request processing lifecycle. The faces

i mpl enentation nust provide a default

impl ementation of this class.

Chapter A Appendix A - JSF Metadata

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement nanme="st at e- manager"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "state-manager" el enent contains the fully
qual ified class name of the concrete StateManager
impl enentation class that will be called during
the Restore View and Render Response phases of the
request processing lifecycle. The faces

i mpl enentati on nust provide a default

impl ementation of this class.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="el -resol ver"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "el -resol ver" el enent contains the fully
qualified class name of the concrete

j avax. el . ELResol ver inplenentation class
that will be used during the processing of
EL expressions.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="property-resol ver"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "property-resolver" elenent contains the fully
qualified class name of the concrete
PropertyResol ver inplenentation class that will

be used during the processing of val ue binding
expr essi ons.

JavaServer Faces Specification « June 2009

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="vari abl e-resol ver"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "vari abl e-resol ver" el enent contains the fully
qualified class name of the concrete

Vari abl eResol ver inplenentation class that wll

be used during the processing of val ue binding
expr essi ons.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nane="resour ce-handl er"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA[

The "resource-handl er" el enent contains the
fully qualified class name of the concrete
Resour ceHandl er i npl enentati on cl ass that
wi Il be used during rendering and decodi ng
of resource requests The standard
constructor based decorator pattern used for
ot her application singletons will be

honor ed.

11>

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="systenm event-|istener"
type="j avaee: f aces-confi g- system event -1i st ener Type"
m nCccur s="0"
maxCccur s="unbounded" >
</ xsd: el ement >
<xsd: el ement
nane="| ocal e-confi g"

type="j avaee: faces-config-1ocal e- confi gType"/ >

Chapter A Appendix A - JSF Metadata

<xsd: el ement
name="r esour ce- bundl e"
type="j avaee: f aces-confi g-appl i cati on-resource-bundl eType"/ >
<xsd: el ement nane="appl i cati on-extensi on"
type="j avaee: f aces-confi g- appl i cati on- ext ensi onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
<xsd: el ement
nanme="def aul t - val i dat or s"
type="j avaee: faces-confi g-defaul t-validatorsType"/>
</ xsd: choi ce>
<xsd:attribute nane = "id" type = "xsd:I1D"'/>
</ xsd: conpl exType>

<xsd: conpl exType name="faces-confi g-application-resource-bundl eType">
<xsd: annot at i on>

<xsd: docunent ati on>

The resource-bundl e el enent inside the application el ement
references a java.util.ResourceBundl e i nstance by name
using the var elenent. ResourceBundles referenced in this
manner nmay be returned by a call to

Appl i cati on. get Resour ceBundl e() passing the current
FacesContext for this request and the value of the var

el ement bel ow.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="base- nanme"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The fully qualified class name of the
java. util.ResourceBundl e instance

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement nanme="var"
type="j avaee: string">
<xsd: annot ati on>

A-14 JavaServer Faces Specification + June 2009

<xsd: docunent ati on>

The name by which this ResourceBundl e instance
is retrieved by a call to
Appl i cati on. get Resour ceBundl e() .

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S O O S Sk R R S ok S b S S R S I S b ok S R ->

<xsd: conpl exType nane = "faces-confi g-application-extensi onType">
<xsd: annot ati on>

<xsd: docunent ati on>

Extension elenent for application. It nmay contain
i mpl ement ati on specific content.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S b O O S R R I I R R kS S R R R S R o - >

<xsd: conpl exType nane = "faces-config-factoryType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "factory" elenent provides a nechanismto define the
various Factories that conprise parts of the inplenmentation
of JavaServer Faces. For nested elenents that are not
specified, the JSF inplenentation must provide a suitable

Chapter A Appendix A - JSF Metadata

defaul t.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el ement name="application-factory"
type="j avaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "application-factory" elenent contains the
fully qualified class name of the concrete
ApplicationFactory inplenentation class that will
be cal |l ed when

Fact or yFi nder . get Fact or y(APPLI CATI ON_FACTORY) is
cal | ed.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="excepti on-handl er-factory"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "exception-handl er-factory" el enment contains the

fully qualified class name of the concrete

Excepti onHandl er Factory inplenentation class that wll

be cal l ed when

Fact or yFi nder . get Fact or y(EXCEPTI ON_HANDLER_FACTORY)
is called.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="ext ernal - cont ext-factory"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "external -context-factory" el enent contains the
fully qualified class name of the concrete

Ext er nal Cont ext Factory inplenentation class that wll

be call ed when

A-16 JavaServer Faces Specification + June 2009

Fact or yFi nder. get Fact or y(EXTERNAL_CONTEXT_FACTORY)
is called.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el ement nane="faces-context-factory"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "faces-context-factory" el enent contains the
fully qualified class name of the concrete
FacesCont ext Factory inplenentation class that wll
be cal l ed when

Fact or yFi nder . get Fact or y(FACES_CONTEXT_FACTCRY)

is called.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el ement nanme="parti al -vi ew cont ext-factory"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "partial -vi ewcontext-factory" el enent contains the
fully qualified class name of the concrete

Parti al Vi ewCont ext Factory inplementation class that wll
be cal |l ed when FactoryFi nder. get Factory

(Fact or yFi nder . PARTI AL_VI EW CONTEXT_FACTORY) is called

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >

<xsd: el ement name="lifecycl e-factory"
type="javaee: ful l y-qualified-cl assType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "lifecycle-factory" elenent contains the fully
qualified class name of the concrete LifecycleFactory

Chapter A Appendix A - JSF Metadata

A-17

A-18

i mpl ementation class that will be called when
Fact or yFi nder. get Fact ory(LI FECYCLE_FACTCRY) is called

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="vi ew decl ar ati on-1| anguage-f actory"
type="javaee: ful l y-qualified-cl assType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "vi ew decl arati on-1 anguage-factory" el enment conta
the fully qualified class name of the concrete

Vi ewDecl ar ati onLanguageFactory

i mpl ementation class that will be called when

Fact or yFi nder. get Fact or y(VI EW DECLARATI ON_FACTCRY) is

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="t ag- handl er - del egat e-fact ory"
type="javaee: ful l y-qualified-cl assType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "tag-handl er-del egate-factory" el enent contains
the fully qualified class name of the concrete

Vi ewDecl ar ati onLanguageFactory

i mpl ementation class that will be called when

Fact or yFi nder . get Fact or y(TAG_HANDLER_DELEGATE_FACTCRY)

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="render-kit-factory"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "render-kit-factory" element contains the fully
qualified class name of the concrete RenderKitFactory
i npl ementation class that will be called when

Fact or yFi nder . get Fact or y(RENDER_KI T_FACTORY) i s
cal |l ed.

JavaServer Faces Specification « June 2009

ns
cal | ed.
is called.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="visit-context-factory"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "visit-context-factory" elenent contains the fully
qualified class name of the concrete VisitContextFactory

i mpl ementation class that will be called when
Fact or yFi nder . get Fact ory(VI SI T_CONTEXT_FACTORY) is
cal | ed.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nane="fact ory- ext ensi on"
type="j avaee: f aces-confi g-f act ory- ext ensi onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: choi ce>
<xsd:attribute nane = "id" type = "xsd:I1D'/>
</ xsd: conpl exType>

<|__ Rk S S I R O Sk R R S Sk S b S I R R R S S R S ->

<xsd: conpl exType nane = "faces-config-factory-extensi onType">
<xsd: annot ati on>

<xsd: docunent ati on>

Extension elenent for factory. It nmay contain
i mpl erent ati on specific content.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

Chapter A Appendix A - JSF Metadata

<|__ R S S S O >

<xsd: conpl exType nane="faces-config-attributeType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "attribute" elenent represents a named, typed, val ue
associated with the parent U Conponent via the generic
attributes mechani sm

Attribute nanes nust be unique within the scope of the parent
(or related) conponent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="attri but e-nane"
type="j avaee: string">
<xsd: annot ati on>

<xsd: docunent ati on>

The "attri bute-name" el enment represents the nane under
whi ch the corresponding value will be stored, in the
generic attributes of the U Conponent we are rel ated
to.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="attri bute-class"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "attribute-class" elenment represents the Java type
of the value associated with this attribute nane.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el enent nane="def aul t - val ue"

A-20 JavaServer Faces Specification + June 2009

type="j avaee: f aces-confi g-defaul t - val ueType"
m nCccur s="0"/>
<xsd: el ement name="suggest ed-val ue"
type="j avaee: f aces- confi g- suggest ed- val ueType"
m nCccurs="0"/>
<xsd: el ement name="attri bute- extensi on"
type="j avaee: faces-confi g-attribute-extensi onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane = "id" type = "xsd:I1D"'/>
</ xsd: conpl exType>

<|__ Rk S O O S Sk R R S ok S b S S R S I S b ok S R ->

<xsd: conpl exType nane = "faces-config-attribute-extensionType">
<xsd: annot ati on>

<xsd: docunent ati on>

Extension elenment for attribute. It nmay contain
i mpl ement ati on specific content.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ EE Ik I O >

<xsd: conpl exType nane="f aces-confi g- component Type" >
<xsd: annot at i on>

<xsd: docunent ati on>

The "component" el enent represents a concrete U Conponent

i npl ementation class that shoul d be regi stered under the
specified type identifier, along with its associated
properties and attributes. Conponent types nust be unique
within the entire web application

Chapter A Appendix A - JSF Metadata

A-21

Nested "attribute" elenents identify generic attributes that
are recogni zed by the inplenentation |ogic of this conponent.
Nested "property" elenents identify JavaBeans properties of
the conmponent class that may be exposed for mani pul ation

via tools.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="conponent-type"
type="j avaee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The "conponent-type" el enment represents the nane under
whi ch the correspondi ng U Conponent cl ass should be
regi stered.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="conponent - cl ass"
type="j avaee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The "conponent-cl ass" el enment represents the fully
qualified class name of a concrete U Conponent
i npl enent ati on cl ass.

</ xsd: docunent ati on>
</ xsd: annot ati on>

</ xsd: el ement >

<xsd: el ement name="facet"
type="j avaee: f aces-confi g-facet Type"
m nCccur s="0"
maxQccur s="unbounded" / >

<xsd: el ement name="attri bute"
type="j avaee: faces-config-attributeType"
m nCccur s="0"
maxQccur s="unbounded"/ >

<xsd: el ement name="property"

A-22 JavaServer Faces Specification + June 2009

type="j avaee: f aces-confi g- propertyType"
m nCccur s="0"
maxCccur s="unbounded"/ >
<xsd: el ement nanme="conponent - ext ensi on"

type="j avaee: f aces- conf i g- conmponent - ext ensi onType"
m nCccur s="0"
maxCccur s="unbounded"/ >

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S I O S Sk R SRR S ok S kS R R S R R o S R - >

<xsd: conpl exType nane="faces-confi g- conponent - ext ensi onType" >
<xsd: annot ati on>
<xsd: docunent ati on>
Ext ensi on el ement for component. It nmay contain
i npl erent ati on specific content.
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ EE Ik I O O >

<xsd: conpl exType nane="faces-confi g-defaul t-1|ocal eType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "default-1ocal e" elenent declares the default |ocale
for this application instance.

It nust be specified as :language:[_:country:[_:variant:]]
wi t hout the colons, for exanple "ja_JP_SJIS". The
separators between the segnents nay be '-' or ' _'.
</ xsd: docunent ati on>
</ xsd: annot ati on>

Chapter A Appendix A - JSF Metadata

A-23

<xsd: si npl eCont ent >
<xsd: ext ensi on base="j avaee: f aces-confi g-1 ocal eType" >
<xsd:attribute name="id" type="xsd:I1D'/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ Rk S S R O S R R I b o S R R ok S b S R R R ->

<xsd: conpl exType name="faces-confi g-defaul t-val ueType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "defaul t-val ue" contains the value for the property or
attribute in which this elenent resides. This value differs
fromthe "suggested-value" in that the property or attribute
must take the value, whereas in "suggested-val ue" taking the
val ue i s optional

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: si npl eCont ent >
<xsd:restriction base="javaee:string"/>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ Rk S S O S S Sk R IR S ok S Sk S R R S S S I O ->

<xsd: si npl eType nanme="faces-confi g-el - expressi onType" >
<xsd: annot ati on>

<xsd: docunent ati on>

EL expressions present within a faces config file
must start with the character sequence of '#{' and
end with '}'.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string">
<xsd:pattern value="#\{.*\}"/>
</ xsd:restriction>
</ xsd: si npl eType>

<|__ Rk I O O S >

A-24 JavaServer Faces Specification + June 2009

<xsd: conpl exType nane="faces-confi g-facet Type">
<xsd: annot ati on>

<xsd: docunent ati on>

Define the nanme and other design-tine information for a facet
that is associated with a renderer or a conponent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="facet - nane"
type="j avaee:java-identifierType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "facet-name" el enent represents the facet nane
under which a U Conponent will be added to its parent.
It must be of type "ldentifier".

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nane="f acet - ext ensi on"
type="j avaee: f aces-confi g-f acet - ext ensi onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S S I Rk S Sk R SRR S ok S b R R S S R I S S S ->

<xsd: conpl exType nane="faces-confi g-facet - ext ensi onType" >
<xsd: annot ati on>

<xsd: docunent ati on>

Extension elenent for facet. It may contain inplenentation
specific content.

</ xsd: docunent ati on>
</ xsd: annot ati on>

Chapter A Appendix A - JSF Metadata

A-25

<xsd: sequence>
<xsd: any namespace="##any"
pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S I R S Sk R R S ok S b S I R R S o S R ->

<xsd: conpl exType nane="faces-config-fromvi ewidType">
<xsd: annot ati on>
<xsd: docurent ati on>

The value of fromviewid nust contain one of the follow ng
val ues:

- The exact match for a viewidentifier that is recognized
by the the Vi ewHandl er inplenentation being used (such as
"/index.jsp" if you are using the default ViewHandl er).

- A proper prefix of a viewidentifier, plus a trailing
"*" character. This pattern indicates that all view
identifiers that match the portion of the pattern up to
the asterisk will match the surrounding rule. Wen nore
than one match exists, the match with the | ongest pattern
is selected.

- An "*" character, which neans that this pattern applies
to all viewidentifiers

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: si npl eCont ent >
<xsd:restriction base="javaee:string"/>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ Rk S I kR R S ok e S R R S kI S R S ->

<xsd: conpl exType nane="faces-config-fromacti onType">
<xsd: annot ati on>
<xsd: docurnent ati on>

A-26 JavaServer Faces Specification + June 2009

The "fromaction" element contains an action reference
expressi on that nust have been executed (by the default
ActionLi stener for handling application |evel events)

in order to select the navigation rule. |If not specified
this rule will be relevant no matter which action reference

was executed (or if no action reference was execut ed)

</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd: si npl eCont ent >
<xsd: ext ensi on base="j avaee: f aces- confi g- el - expressi onType" >

<xsd: attribute nane="id" type="xsd:ID'/>

</ xsd: ext ensi on>

</ xsd: si npl eCont ent >

</ xsd: conpl exType>

<|__ Rk S O >

<xsd: conpl exType nane="faces-config-ifType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "if" el enent defines a condition that nust resolve

to true in order for the navigation case on which it is
defined to be matched, with the existing match criteria
(action nethod and outcone) as a prerequiste, if present.
The condition is defined declaratively using a val ue
expression in the body of this element. The expression is
evaluated at the time the navigation case is being matched.
If the "fromoutcome" is omtted and this element is
present, the navigation handler will match a null outcone
and use the condition return value to deternmine if the
case shoul d be considered a natch.

</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd: ext ensi on base="j avaee: faces-confi g- el - expressi onType" >

<xsd:attribute name="id" type="xsd:ID'/>

</ xsd: ext ensi on>

</ xsd: si npl eCont ent >

</ xsd: conpl exType>

<|__ Rk S O Rk kS R R R S S b R R Ok R R S R R - >

Chapter A Appendix A - JSF Metadata

A-27

<xsd: conpl exType nane="faces-confi g-converter Type">
<xsd: annot at i on>

<xsd: docunent ati on>

The "converter" el enent represents a concrete Converter

i npl ementation class that shoul d be regi stered under the
specified converter identifier. Converter identifiers mnust
be unique within the entire web application.

Nested "attribute" elenents identify generic attributes that
may be configured on the correspondi ng U Conponent in order
to affect the operation of the Converter. Nested "property"
el ements identify JavaBeans properties of the Converter

i npl ementation class that may be configured to affect the
operation of the Converter. "attribute" and "property"

el ements are intended to all ow conponent devel opers to

nmore conpl etely describe their conponents to tools and users
These el ements have no required runtinme senantics.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: choi ce>
<xsd: el ement name="converter-id"
type="j avaee: string">
<xsd: annot ati on>

<xsd: docunent ati on>

The "converter-id" element represents the
identifier under which the corresponding

Converter class should be registered.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el ement name="converter-for-class”
type="javaee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The "converter-for-class" el enment represents the
fully qualified class name for which a Converter

A-28 JavaServer Faces Specification + June 2009

class will be registered

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: choi ce>

<xsd: el ement nanme="converter-class"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The "converter-class" elenment represents the fully
qualified class nane of a concrete Converter

i mpl emrent ati on cl ass.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement name="attri bute"
type="j avaee: faces-config-attributeType"
m nCccur s="0"
maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

Nested "attribute" elenents identify generic
attributes that may be configured on the
correspondi ng U Conponent in order to affect the
operation of the Converter. This attribute is
primarily for design-time tools and is not
specified to have any neaning at runtine.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="property"
type="j avaee: f aces-confi g- propertyType"
m nCccur s="0"
maxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

Nested "property" elenents identify JavaBeans
properties of the Converter inplenentation class

Chapter A Appendix A - JSF Metadata A-29

that may be configured to affect the operation of
the Converter. This attribute is primarily for
design-tine tools and is not specified to have
any neaning at runtine.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="convert er - ext ensi on"
type="j avaee: f aces-confi g- converter-ext ensi onType"
m nCccur s="0"
maxQccur s="unbounded" / >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S O >

<xsd: conpl exType nanme = "faces-config-converter-extensi onType">
<xsd: annot at i on>

<xsd: docunent ati on>

Ext ensi on el ement for converter. It may contain
i npl ement ati on specific content.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S Rk S Sk R R R Ok S Sk S S R Sk S S R S ->

<xsd: conpl exType nane="faces-config-IlifecycleType">
<xsd: annot ati on>

<xsd: docunent ati on>

A-30 JavaServer Faces Specification * June 2009

The "lifecycle" el enent provides a mechanismto specify
nodi fications to the behaviour of the default Lifecycle
i mpl ementation for this web application.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="phase-|istener"
type="j avaee: fully-qualified-classType"
m nCccur s="0"

maxQccur s="unbounded" >

<xsd: annot ati on>

<xsd: docunent ati on>

The "phase-listener" element contains the fully
qualified class name of the concrete Phaseli stener
i mpl ementation class that will be registered on
the Lifecycle.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="1ifecycl e- ext ensi on"
type="j avaee: faces-config-Ilifecycl e-extensi onType"
m nCccur s="0"

maxQccur s="unbounded"/ >

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S O S I S ->

<xsd: conpl exType nanme = "faces-config-lifecycl e-extensionType">
<xsd: annot at i on>

<xsd: docunent ati on>

Extension element for lifecycle. It may contain
i npl ement ati on specific content.

</ xsd: docunent ati on>
</ xsd: annot ati on>

Chapter A Appendix A - JSF Metadata

A-31

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S S O R S Sk R R I ok S S R R SRR ok S b I S R R - >

<xsd: si npl eType nane="faces-config-1ocal eType">
<xsd: annot ati on>

<xsd: docunent ati on>

The | ocal eType defines valid | ocal e defined by | SO 639-1
and | SO 3166.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd:restriction base="xsd:string">
<xsd: pattern value="([a-z]{2})[_|\-12([\p{L}]1{2})?2[_|\-T12(\w+)?2"/>
</ xsd:restriction>
</ xsd: si npl eType>

<|__ EE I O S >

<xsd: conpl exType name="faces-confi g-I|ocal e-configType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "l ocal e-config" elenent allows the app devel oper to
decl are theA supported locales for this application

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="defaul t-|ocal e"
type="j avaee: faces-confi g-defaul t-1ocal eType"
m nCccur s="0">
</ xsd: el enent >

| A-32 JavaServer Faces Specification * June 2009

<xsd: el ement name="supported-| ocal e"
type="j avaee: f aces- confi g- supported-| ocal eType"
m nCccur s="0"
maxQccur s="unbounded" >
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S I R S Sk R R S ok S b S I R R S o S R ->

<xsd: conpl exType nane="f aces-confi g-defaul t-validatorsType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "defaul t-validators" elenment allows the app devel oper to
register a set of validators, referenced by identifier, that
are automatically assigned to any Editabl eval ueHol der conponent
in the application, unless overridden or disabled |ocally.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="validator-id"
type="j avaee: string"
m nCccur s="0"
maxQccur s="unbounded" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "validator-id" elenment represents the identifier
of a registered validator.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S R I Rk S Sk R R S R Rk S I R R S b o S I R - >

<xsd: conpl exType nane="f aces-confi g- nanaged- beanType" >
<xsd: annot ati on>

Chapter A Appendix A - JSF Metadata

A-33

<xsd: docunent ati on>

The "managed-bean" el enent represents a JavaBean, of a
particular class, that will be dynamically instantiated

at runtime (by the default Variabl eResol ver inplenmentation)
if it is referenced as the first elenent of a val ue binding
expressi on, and no correspondi ng bean can be identified in
any scope. In addition to the creation of the nmanaged bean
and the optional storing of it into the specified scope

t he nested nanaged-property el enents can be used to
initialize the contents of settable JavaBeans properties of
the created instance.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="rmanaged- bean- nane"
type="j avaee:java-identifierType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "nmanaged- bean-nane" el enent represents the
attribute name under which a managed bean will
be searched for, as well as stored (unless the
"managed- bean- scope" value is "none").

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="nmanaged- bean-cl ass"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "nmanaged- bean-cl ass" el ement represents the fully
qualified class nanme of the Java class that will be
used to instantiate a new instance if creation of the
speci fi ed” managed bean is request ed.

The specified class nust conformto standard JavaBeans
conventions. In particular, it nust have a public
zero-argunents constructor, and zero or nore public
property setters.

A-34 JavaServer Faces Specification + June 2009

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement
nane="nmanaged- bean- scope"
type="j avaee: f aces- conf i g- managed- bean- scopeOr NoneType" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "nmanaged- bean-scope" el enent represents the scope
into which a newWy created instance of the specified
managed bean will be stored (unless the value is
"none").

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: choi ce>
<xsd: el ement nane="rmanaged- property"
type="j avaee: f aces- confi g- managed- pr opert yType"
m nCccur s="0"
maxCccur s="unbounded"/ >
<xsd: el ement nanme="rmap-entries"
type="j avaee: f aces-confi g- map-entri esType"/ >
<xsd: el ement name="list-entries"
type="j avaee: faces-config-list-entriesType"/>
</ xsd: choi ce>
<xsd: el ement name="managed- bean- ext ensi on"
type="j avaee: f aces- confi g- nanaged- bean- ext ensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attri bute nane="eager"
type="xsd: bool ean"
use="optional ">
<xsd: annot ati on>

<xsd: docunent ati on>

This attribute is only considered when associated with

an application-scoped managed bean. |f the value of the eager
attribute is true the runtine nust instantiate this class
and store the instance within the application scope when the
application starts.

Chapter A Appendix A - JSF Metadata

A-35

If eager is unspecified or is false, the default "lazy"
i nstantiation and scoped storage of the nanaged bean
will occur.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S O S >

<xsd: conpl exType name = "faces-confi g- managed- bean- ext ensi onType" >
<xsd: annot at i on>

<xsd: docunent ati on>

Ext ensi on el ement for nmanaged-bean. It may contain
i npl ement ati on specific content.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any namespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk I O S >

<xsd: conpl exType nane="faces- confi g- nranaged- bean- scopeOr NoneType" >
<xsd: annot at i on>

<xsd: docunent ati on>

<! [CDATA[

Defines the |l egal values for the <managed-bean-scope>

el ement' s body content, which includes all of the scopes
nornal ly used in a web application, plus the "none" val ue
indicating that a created bean should not be stored into

any scope. Alternatively, an EL expression may be used

as the value of this elenent. The result of evaluating this

A-36 JavaServer Faces Specification + June 2009

expressi on nmust by of type java.util.Map

11>

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: si npl eCont ent >
<xsd:restriction base="javaee:string">
<xsd: pattern val ue="vi ew request| sessi on| applicati on| none| # {.*\}"/>
</xsd:restriction>

</ xsd: si npl eCont ent >

</ xsd: conpl exType>

<|__ Rk I O O O I O I >

<xsd: conpl exType nane="f aces- confi g- nanaged- pr opertyType" >
<xsd: annot at i on>

<xsd: docunent ati on>

The "nmanaged-property" el enent represents an individual
property of a nanaged bean that will be configured to the
specified value (or value set) if the corresponding
managed bean is automatically created.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement nane="property-nane"
type="j avaee: string">
<xsd: annot ati on>

<xsd: docunent ati on>

The "property-nane" el enent represents the JavaBeans
property nanme under which the corresponding val ue may
be stored.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="property-cl ass"
type="j avaee:j ava-typeType"
m nQccur s="0">
<xsd: annot ati on>

<xsd: docunent ati on>

Chapter A Appendix A - JSF Metadata

A-37

The "property-class" el enent represents the Java type
of the value associated with this property nane.

If not specified, it can be inferred from existing

cl asses; however, this elenent should be specified

if the configuration file is going to be the source
for generating the correspondi ng cl asses.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: choi ce>
<xsd: el ement nane="rmap-entries"
type="j avaee: faces-confi g-map-entri esType"/ >
<xsd: el ement name="nul | - val ue"
type="j avaee: f aces-confi g-nul | -val ueType">
</ xsd: el ement >
<xsd: el ement nanme="val ue"
type="j avaee: f aces-confi g-val ueType"/ >
<xsd: el ement name="list-entries"
type="j avaee: faces-config-list-entriesType"/>
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S O Rk S Sk S R R Sk S ko S S SRR S S b o S S I R - >

<xsd: conpl exType nane="faces-confi g- nap-entryType" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "nmap-entry" el enent reprsents a single key-entry pair
that will be added to the conmputed val ue of a managed
property of type java.util.Mp

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="key"
type="j avaee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The "key" elenent is the String representation of a
map key that will be stored in a nmanaged property of

A-38 JavaServer Faces Specification * June 2009

</ xs

</ xsd: an

</ xsd: el enen
<xsd: choi ce>

<xsd: el e

<xsd: el e

</ xsd: choi ce

</ xsd: sequence>
<xsd:attribute n

</ xsd: conpl exType>

<|__ khkkkkkhkhkkhkdkhkkk

type java.util. Mp.

d: docunent ati on>
not ati on>

t>

nment nanme="nul | -val ue"
type="j avaee: faces-confi g-nul |l -val ueType"/ >
nment nanme="val ue"

type="j avaee: f aces-confi g-val ueType"/ >
>

ame="id" type="xsd:ID'/>

Rk S R Rk S kS S R R R S S o S O S ->

<xsd: conpl exType nane="faces-confi g- map-entri esType">

<xsd: annot ati on>

<xsd: docunen

The "nap
that wil

tation>

-entries' elenent represents a set of key-entry pairs
| be added to the conputed val ue of a managed property

of type java.util.Map. In addition, the Java class types

of the k

</ xsd: docune
</ xsd: annot ati on

<xsd: sequence>

<xsd: el enent

<xsd: ann
<xsd

</ xs

</ xsd: an

</ xsd: el enen
<xsd: el enent

ey and entry values may be optionally decl ared.

nt ati on>

>

nane="key- cl ass"

type="j avaee: fully-qualified-classType"
m nCccur s="0">
ot ati on>

: docunent ati on>

The "key-cl ass" el enent defines the Java type to which
each "key" elenment in a set of "map-entry" elenents
will be converted to. |If omtted, "java.lang. String"

i s assuned.

d: docunent ati on>
not ati on>
t>

name="val ue-cl ass"

Chapter A Appendix A - JSF Metadata

A-39

type="j avaee: f aces- confi g- val ue- cl assType"
m nCccur s="0"/>
<xsd: el ement name="map-entry"
type="j avaee: faces-confi g- map-entryType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk I O S O S S S >

<xsd: conpl exType name="faces-confi g- navi gati on-caseType" >
<xsd: annot at i on>

<xsd: docunent ati on>

The "navi gation-case" el ement describes a particul ar

conbi nati on of conditions that must natch for this case to
be executed, and the view id of the conponent tree that
shoul d be sel ected next.

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="fromaction"
type="j avaee: faces-confi g-from acti onType"
m nCccur s="0">
</ xsd: el enent >
<xsd: el ement name="from out cone"
type="j avaee: string" m nQccurs="0">
<xsd: annot ati on>

<xsd: docunent ati on>

The "from outconme" el enment contains a |ogical outcome
string returned by the execution of an application
action method selected via an "actionRef" property
(or aliteral value specified by an "action" property)
of a U Command conponent. |If specified, this rule

will be relevant only if the outcome val ue natches

this elenent's value. |If not specified, this rule
will be relevant if the outcone value is non-nul
or, if the "if" element is present, will be rel evant

for any outcome value, with the assunption that the
condition specified in the "if" elenent ultimtely

A-40 JavaServer Faces Specification + June 2009

determnes if this rule is a match.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement name="if"
type="j avaee: faces-config-if Type"
m nCQccur s="0">
<xsd: annot ati on>

<xsd: docunent ati on>
RELEASE_PENDI NG (edbur ns, roger k) docs

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="t o-vi ewid"
type="j avaee: f aces- confi g- val ueType" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "to-viewid" element contains the view identifier
of the next view that should be displayed if this
navigation rule is matched. If the contents is a

val ue expression, it should be resolved by the

navi gation handler to obtain the view identifier.

</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement
nanme="r edi rect"
type="j avaee: faces-config-redirect Type" m nQccurs="0"/>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S S O Rk S Sk R R S ok S R S ok b S R S R R o - >

<xsd: conpl exType nane="faces-confi g- navi gati on-rul eType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "navigation-rule" elenent represents an individua
decision rule that will be utilized by the default

Chapter A Appendix A - JSF Metadata

A-41

Navi gati onHandl er inpl enentation to make deci sions on
what vi ew shoul d be di spl ayed next, based on the
view id being processed.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="fromvi ewid"
type="j avaee: faces-config-fromvi ewi dType"
m nCccurs="0"/>
<xsd: el ement nane="navi gati on-case"
type="j avaee: f aces- confi g- navi gati on- caseType"
m nCccur s="0"
maxCccur s="unbounded"/ >
<xsd: el ement
nane="navi gati on-rul e- ext ensi on"
type="j avaee: f aces- confi g- navi gati on-rul e- ext ensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ R I O S >

<xsd: conpl exType nanme = "faces-config-navi gation-rul e-extensi onType">
<xsd: annot at i on>

<xsd: docunent ati on>

Ext ensi on el ement for navigation-rule. It may contain
i npl erent ati on specific content.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any namespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

A-42 JavaServer Faces Specification * June 2009

<|__ Rk S R R R S S Sk R SRR S o S T S R R R R S o S >

<xsd: conpl exType nane="faces-confi g-null-val ueType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "nul | -val ue" el enent indicates that the managed
property in which we are nested will be explicitly
set to null if our managed bean is autonatically
created. This is different fromonitting the nanaged
property elenent entirely, which will cause no
property setter to be called for this property.

The "nul | -val ue" el enent can only be used when the
associ ated "property-class" identifies a Java cl ass,
not a Java prinmtive.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S S I O S R R R S Sk S S R R S R Sk I S b S S SRR S - >

<xsd: conpl exType nane="faces-confi g- propertyType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "property" elenment represents a JavaBean property of the
Java cl ass represented by our parent el enment.

Property nanes nust be unique within the scope of the Java
class that is represented by the parent el enent, and nust
correspond to property names that will be recogni zed when
perform ng introspection agai nst that class via

j ava. beans. I ntrospector.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="property-nanme"
type="j avaee: string">

<xsd: annot at i on>

Chapter A Appendix A - JSF Metadata

A-43

<xsd: docunent ati on>

The "property-nane" el enent represents the JavaBeans
property nane under which the correspondi ng val ue
may be stored

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="property-cl ass"
type="j avaee: j ava-typeType" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "property-class" el enent represents the Java type
of the value associated with this property nane.

If not specified, it can be inferred from existing

cl asses; however, this elenent should be specified if
the configuration file is going to be the source for
generating the correspondi ng cl asses.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="def aul t - val ue"
type="j avaee: faces-confi g-defaul t - val ueType"
m nCccurs="0"/>
<xsd: el ement nane="suggest ed- val ue"
type="j avaee: f aces- confi g- suggest ed- val ueType"
m nCQccurs="0"/>
<xsd: el ement name="property-extension"
type="j avaee: f aces-confi g- property-extensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S S O Rk S kR R R Ok S kR R O R R S b o S I - >

<xsd: conpl exType nane="f aces-confi g- property-extensi onType">
<xsd: annot ati on>

<xsd: docunent ati on>

A-44 JavaServer Faces Specification + June 2009

Ext ensi on el ement for property. It may contain
i mpl ement ati on specific content.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: any namespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<| — Rk S I kR R S ok S b S R R S S S

<xsd: conpl exType nane="faces-confi g-redirect Type">
<xsd: annot ati on>

<xsd: docunent ati on>

The "redirect" elenment indicates that navigation to the
specified "to-viewid" should be acconplished by
perform ng an HTTP redirect rather than the usua

Vi ewHandl er nechani sns.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="vi ew par anf
type="j avaee: faces-confi g-redirect-vi ewPar aniType"
m nCccur s="0" nmaxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="id" type="xsd:ID'/>

<xsd: attribute nane="incl ude-vi ew parans" type="xsd: bool ean" use="optional"/>
</ xsd: conpl exType>

<|__ Rk I O O S >

<xsd: conpl exType nane="faces-confi g-redirect-vi ewPar anlype" >
<xsd: annot at i on>

<xsd: docunent ati on>

The "vi ew parant elenent, only valid within

Chapter A Appendix A - JSF Metadata A-45

a "redirect" element, contains child "name"

and
r edi

"value" elenents that nust be included in the
rect url when the redirect is perforned.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>

<xsd: el enment

<xsd: el enent

</ xsd: sequence>

name="nane"

type="j avaee: string"

m nCccurs="1" nmaxQccurs="1"/>
nane="val ue"

type="j avaee: string"

m nCccur s="1" naxCccurs="1"/>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk I O >

<xsd: conpl exType nane="faces-confi g-referenced- beanType" >

<xsd: annot ati on>

<xsd: docunent ati on>

The "ref
prom se
runtine

used by

erenced- bean" el enent represents at design tinme the
that a Java object of the specified type will exist at
in some scope, under the specified key. This can be
design tine tools to construct user interface dial ogs

based on the properties of the specified class. The presence

or absence of a referenced bean el enent has no inpact on the

JavaServer Faces runtinme environment inside a web application.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: group r
<xsd: el ement

ef ="j avaee: descri pti onG oup"/ >
name="r ef er enced- bean- nane"
type="j avaee:java-identifierType">

<xsd: annot at i on>

<xsd: docunent ati on>

The "referenced- bean-nane" el enent represents the
attribute name under which the correspondi ng
referenced bean nmay be assuned to be stored, in one
of 'request', 'session', 'view, 'application

A-46 JavaServer Faces Specification + June 2009

or a custom scope.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="r ef er enced- bean- cl ass"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "referenced- bean-cl ass" el ement represents the
fully qualified class name of the Java cl ass
(either abstract or concrete) or Java interface

i mpl enrented by the corresponding referenced bean.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S S >

<xsd: conpl exType nane="faces-confi g-render-kitType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "render-kit" el enment represents a concrete RenderKit

i npl enentation that should be registered under the specified
render-kit-id. |If no render-kit-id is specified, the
identifier of the default RenderKit

(RenderKi t Fact ory. DEFAULT_RENDER KI T) is assuned.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="render-kit-id"
type="j avaee: string"
m nCccur s="0">
<xsd: annot ati on>

<xsd: docunent ati on>

Chapter A Appendix A - JSF Metadata A-47

The "render-kit-id" elenent represents an identifier
for the RenderKit represented by the parent
"render-kit" el enent.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="render-Kkit-class"
type="j avaee: fully-qualified-classType"
m nCQccur s="0">
<xsd: annot ati on>
<xsd: docunent ati on>

The "render-kit-class" elenent represents the fully
qualified class name of a concrete RenderKit
i mpl enent ati on cl ass.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="renderer"
type="j avaee: f aces-confi g-renderer Type"
m nCccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement name="cl i ent - behavi or -renderer"
type="j avaee: f aces-confi g-cli ent-behavi or-renderer Type"
m nCccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement name="render - kit - ext ensi on"
type="j avaee: f aces-confi g-render-Kkit-extensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk I O S >

<xsd: conpl exType nane="faces-confi g-client-behavi or-renderer Type">
<xsd: annot at i on>

<xsd: docunent ati on>

The "client-behavior-renderer" el enent represents a concrete
Cl i ent Behavi or Renderer inplenentation class that should be
regi stered under the specified behavior renderer type identifier,

A-48 JavaServer Faces Specification * June 2009

in the RenderKit associated with the parent "render-kit"
element. dient Behavior renderer type nust be unique within the RenderKit
associated with the parent "render-kit" el ement.

Nested "attribute" elenents identify generic conmponent
attributes that are recogni zed by this renderer

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement nanme="cl i ent - behavi or-renderer-type"
type="j avaee: string">
<xsd: annot ati on>

<xsd: docunent ati on>

The "client-behavi or-renderer-type" el enent represents a renderer type
identifier for the Cient Behavior Renderer represented by the parent
"client-behavior-renderer" el ement.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="cl i ent - behavi or-renderer-cl ass"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "cl i ent-behavior-renderer-cl ass" el enent represents the fully
qualified class name of a concrete dient Behavior Renderer
i mpl emrent ati on cl ass.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>

</ xsd: conpl exType>

<xsd: conpl exType nane="f aces-confi g-renderer Type">
<xsd: annot at i on>

<xsd: docunent ati on>

The "renderer" el ement represents a concrete Renderer
i npl ementation class that shoul d be regi stered under the
speci fied conmponent fanmily and renderer type identifiers,

Chapter A Appendix A - JSF Metadata A-49

in the RenderKit associated with the parent "render-kit"
el ement. Conbi nati ons of conponent famly and

renderer type nust be unique within the RenderKit
associated with the parent "render-kit" el enent.

Nested "attribute" elenents identify generic conponent
attributes that are recogni zed by this renderer.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement nanme="conponent-fam |l y"
type="j avaee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The "conponent-fam | y" el enent represents the
conponent famly for which the Renderer represented
by the parent "renderer" element will be used

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement name="renderer-type"
type="j avaee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The "renderer-type" el enent represents a renderer type
identifier for the Renderer represented by the parent

"renderer" el enment.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="renderer-cl ass"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The "renderer-cl ass" el enent represents the fully
qualified class name of a concrete Renderer

i mpl emrent ati on cl ass.

A-50 JavaServer Faces Specification + June 2009

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="facet"
type="j avaee: f aces-confi g-facet Type"
m nCccur s="0"
maxQccur s="unbounded" / >
<xsd: el ement name="attri bute"
type="j avaee: faces-config-attributeType"
m nCccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement name="r ender er - ext ensi on"
type="j avaee: f aces-confi g-render er - ext ensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S O S >

<xsd: conpl exType nane="f aces-confi g-renderer-extensi onType" >
<xsd: annot at i on>

<xsd: docunent ati on>

Ext ension el ement for renderer. It may contain inplenentation

specific content.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any namespace="##any"
pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCOccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S O R S Sk S R R Sk S Sk S S R S S S R R I S - >

<xsd: conpl exType nane="faces-confi g-render-Kkit-extensi onType">
<xsd: annot ati on>

Chapter A Appendix A - JSF Metadata

A-51

<xsd: docunent ati on>

Ext ensi on el ement for render-kit. It may contain
i npl erent ati on specific content.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: any nanmespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk I O >

<xsd: conpl exType nane="faces-confi g- suggest ed- val ueType" >
<xsd: annot at i on>

<xsd: docunent ati on>

The "suggested-val ue" contains the value for the property or
attribute in which this elenment resides. This value is
advisory only and is intended for tools to use when

popul ating pal |l ettes.

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: si npl eCont ent >
<xsd:restriction base="javaee:string"/>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ Rk I O S >

<xsd: conpl exType nane="faces-confi g- supported-| ocal eType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "supported-1locale" el enent allows authors to declare
whi ch | ocal es are supported in this application instance.

A-52 JavaServer Faces Specification * June 2009

It nust be specified as :language:[_:country:[_:variant:]]
wi thout the colons, for exanple "ja_JP_SJIS". The

separators between the segnments may be '-' or

</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd: ext ensi on base="j avaee: f aces-confi g-1 ocal eType" >

<xsd:attribute name="id" type="xsd:I1D'/>

</ xsd: ext ensi on>

</ xsd: si npl eCont ent >

</ xsd: conpl exType>

<|__ Rk S S O R S Sk R R S ok S R R R R ok S S O R o S R - >

<xsd: conpl exType nane="f aces-confi g- behavi or Type" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "behavi or" el ement represents a concrete Behavi or

i mpl ement ati on class that shoul d be regi stered under the
speci fied behavior identifier. Behavior identifiers nust
be unique within the entire web application.

Nested "attribute" elenents identify generic attributes that
may be configured on the correspondi ng U Conponent in order
to affect the operation of the Behavior. Nested "property"
el ements identify JavaBeans properties of the Behavior

i mpl ement ation class that may be configured to affect the
operation of the Behavior. "attribute" and "property"

el ements are intended to all ow conmponent devel opers to

nmore conpl etely describe their conponents to tools and users.
These el ements have no required runtime senmantics.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>

<xsd: group ref="javaee: descri pti onG oup"/ >

<xsd: el ement name="behavi or-id"

type="j avaee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The "behavior-id" elenment represents the identifier
under whi ch the correspondi ng Behavi or class shoul d

Chapter A Appendix A - JSF Metadata

A-53

be registered.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="behavi or-cl ass"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The "behavior-cl ass" el enent represents the fully
qualified class name of a concrete Behavior

i mpl ement ati on cl ass.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement name="attri bute"
type="j avaee: faces-config-attributeType"
m nCccur s="0"
maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

Nested "attribute" elenents identify generic
attributes that may be configured on the
correspondi ng U Conponent in order to affect the
operation of the Behavior. This attribute is
primarily for design-time tools and is not
specified to have any neaning at runtine.

</ xsd: docunent ati on>
</ xsd: annot ati on>

</ xsd: el enent >
<xsd: el ement nane="property"
type="j avaee: f aces- confi g- propertyType"
m nCccur s="0"
maxCccur s="unbounded" >
<xsd: annot ati on>

<xsd: docunent ati on>

Nested "property" elenments identify JavaBeans
properties of the Behavior inplenentation class
that may be configured to affect the operation of

A-54 JavaServer Faces Specification * June 2009

the Behavior. This attribute is primarily for
design-tine tools and is not specified to have
any meani ng at runtine.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="behavi or - ext ensi on"
type="j avaee: f aces- confi g- behavi or - ext ensi onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<|__ Rk S O >

<xsd: conpl exType nanme = "faces-confi g-behavi or-ext ensi onType" >
<xsd: annot at i on>

<xsd: docunent ati on>

Ext ensi on el ement for behavior. It may contain
i npl erent ati on specific content.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any namespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S Sk I R Sk S Sk R R S ok S S S A R R R O R - >

<xsd: conpl exType nane="faces-confi g-val i dat or Type" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "validator" el enent represents a concrete Validator

i mpl ement ati on class that shoul d be regi stered under the
specified validator identifier. Validator identifiers nust
be unique within the entire web application.

Chapter A Appendix A - JSF Metadata A-55

Nested "attribute" elenents identify generic attributes that
may be configured on the correspondi ng U Conponent in order
to affect the operation of the Validator. Nested "property"
el ements identify JavaBeans properties of the Validator

i npl ementation class that may be configured to affect the
operation of the Validator. "attribute" and "property"

el ements are intended to all ow conponent devel opers to

nmore conpl etely describe their conponents to tools and users

These el ements have no required runtinme senantics.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: group ref="javaee: descri pti onG oup"/ >

<xsd: el ement nanme="val i dator-id"

type="j avaee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The "validator-id" element represents the identifier
under which the correspondi ng Validator class should

be registered.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="val i dat or-cl ass"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The "validator-class" elenment represents the fully
qualified class nanme of a concrete Validator

i mpl ement ati on cl ass.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement name="attri bute"
type="j avaee: faces-config-attributeType"
m nCccur s="0"
maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

A-56 JavaServer Faces Specification + June 2009

Nested "attribute" elenents identify generic
attributes that may be configured on the
correspondi ng U Conponent in order to affect the
operation of the Validator. This attribute is
primarily for design-tinme tools and is not

specified to have any nmeaning at runtime.

</ xsd: docunent ati on>

</ xsd: annot at i on>

</ xsd: el ement >
<xsd: el ement name="property"
type="j avaee: f aces-confi g- propertyType"
m nCccur s="0"
maxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

Nested "property" elenents identify JavaBeans
properties of the Validator inplenentation class
that may be configured to affect the operation of
the Validator. This attribute is primarily for
design-tine tools and is not specified to have

any meani ng at runtine.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement name="val i dat or - ext ensi on"
type="j avaee: f aces- confi g-val i dat or - ext ensi onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S I Rk S Sk S R R Sk S kS S R R I R ok R - >

<xsd: conpl exType nane = "faces-config-vali dator-extensionType">
<xsd: annot ati on>
<xsd: docunent ati on>

Extension elenment for validator. It may contain

i mpl erent ati on specific content.

Chapter A Appendix A - JSF Metadata

A-57

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any namespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk S O R S Sk R R S Sk S b S S R R R S S R R S - >

<xsd: si npl eType nane="faces-confi g-val ueType" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "val ue" elenent is the String representation of

a literal value to which a scal ar managed property
will be set, or a value binding expression ("#{...}")
that will be used to calculate the required val ue

It will be converted as specified for the actua
property type.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: uni on
menber Types="j avaee: f aces-confi g- el - expressi onType xsd:string"/>
</ xsd: si npl eType>

<|__ Rk S S S >

<xsd: conpl exType nane="faces-confi g-val ue-cl assType" >
<xsd: annot at i on>

<xsd: docunent ati on>

The "val ue-cl ass" el ement defines the Java type to which each
"val ue" elenent's value will be converted to, prior to adding
it tothe "list-entries" list for a nanaged property that is
a java.util.List, or a "map-entries" map for a nanaged
property that is a java.util.Mp

</ xsd: docunent ati on>

A-58 JavaServer Faces Specification *+ June 2009

</ xsd: annot ati on>
<xsd: si npl eCont ent >
<xsd:restriction base="javaee:fully-qualified-classType"/>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ EE Ik I O S >

<xsd: conpl exType nanme="faces-config-list-entriesType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "list-entries" element represents a set of initialization
el ements for a managed property that is a java.util.List or an
array. In the former case, the "value-class" el ement can
optionally be used to declare the Java type to which each

val ue shoul d be converted before adding it to the Collection.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="val ue-cl ass"
type="j avaee: f aces- confi g- val ue- cl assType"
m nCccur s="0"/>
<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el ement nanme="nul | - val ue"
type="j avaee: f aces-confi g-nul | -val ueType"/ >
<xsd: el ement name="val ue"
type="j avaee: f aces- confi g- val ueType"/ >
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk S O S >

<xsd: conpl exType nanme="faces-confi g-system event-1i stenerType">
<xsd: annot at i on>

<xsd: docunent ati on>

The presence of this element within the "application" elenent in
an application configuration resource file indicates the

devel oper wants to add an SystenEventlListener to this
application instance. Elenents nested within this elenment allow
selecting the kinds of events that will be delivered to the

Chapter A Appendix A - JSF Metadata

A-59

Iistener instance, and allow selecting the kinds of classes that
can be the source of events that are delivered to the |listener
i nst ance.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nanme="system event-|istener-class"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "systemevent-listener-class" el enent contains
the fully qualified class name of the concrete

Syst enEvent Li stener inplementation class that will be
call ed when events of the type specified by the
"system event-cl ass" are sent by the runtine.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="systenm event-cl ass"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "system event-cl ass" el ement contains the fully
qualified class nane of the SystenkEvent subclass for
whi ch events will be delivered to the class whose fully
qualified class nane is given by the
"systemevent-Ilistener-class" el ement.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="sour ce-cl ass" m nCccurs="0"
type="javaee: fully-qualified-classType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "source-class" elenment, if present, contains the
fully qualified class name of the class that will be the
source for the event to be delivered to the class whose
fully qualified class name is given by the

"system event-Ilistener-class" el ement.

A-60 JavaServer Faces Specification + June 2009

1.2

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<| - Rk I O O S R S S

<xsd: si npl eType nanme="faces-config-versionType">
<xsd: annot at i on>

<xsd: docunent ati on>

This type contains the recogni zed versions of
faces-config supported

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="2.0"/>
</ xsd:restriction>
</ xsd: si npl eType>

<| - Rk I O O S R S S

</ xsd: schema>

t ar get Nanespace="http://java. sun. coni xm / ns/j avaee"
xm ns:javaee="http://java. sun. com xm / ns/j avaee"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"

xm ns: xm ="http://ww. w3. or g/ XM_/ 1998/ nanespace"

el ement For nDef aul t =" qual i fi ed"

attri but eFor mDef aul t ="unqual i fi ed"

version="2.0">

<xsd: i ncl ude schenaLocati on="j avaee_5. xsd"/>

->

S

XML Schema Definition For Facelet Taglib

<xsd: schema

<xsd: el emrent nane="facel et-taglib" type="javaee:facelet-taglibType">

<xsd: uni que nane="facel et-taglib-tagnane-uni queness" >
<xsd: annot ati on>

Chapter A Appendix A - JSF Metadata

A-61

<xsd: docunent ati on>

t ag- names nust be uni que within a docunent.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sel ector xpat h="j avaee:tag"/>
<xsd:field xpat h="j avaee: t ag- nane"/ >
</ xsd: uni que>
<xsd: uni que nane="faces-confi g- behavi or-1D- uni queness" >
<xsd: annot at i on>

<xsd: docunent ati on>

Behavi or | Ds rmust be unique within a docunent.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sel ector xpat h="j avaee: behavi or"/>
<xsd:field xpat h="j avaee: behavi or-id"/>
</ xsd: uni que>
<xsd: uni que nane="faces-config-converter-I| D uni queness">
<xsd: annot at i on>

<xsd: docunent ati on>

Converter |Ds must be unique within a docunent.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sel ector xpat h="j avaee: converter"/>
<xsd:field xpat h="j avaee: converter-id"/>
</ xsd: uni que>
<xsd: uni que nane="faces-config-validator-I| D uni queness">
<xsd: annot at i on>

<xsd: docunent ati on>

Val idator |IDs nust be unique within a docunent.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sel ector xpat h="j avaee: validator"/>
<xsd:field xpat h="j avaee: val i dator-id"/>
</ xsd: uni que>
</ xsd: el ement >
<xsd: conpl exType nane="facel et-tagli bType">
<xsd: annot ati on>
<xsd: docunent ati on>
The top level XM element in a facelet tag library XM file
</ xsd: docunent at i on>
</ xsd: annot ati on>

A-62 JavaServer Faces Specification + June 2009

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: choi ce>
<xsd: el enrent nane="li brary-cl ass"
type="javaee: ful l y-qualified-cl assType"/>
<xsd: sequence>
<xsd: el ement nanme="nanespace" type="javaee:string"/>
<xsd: el ement m nCccurs="0" maxCccurs="1"
nane="conposi te-1i brary-name"
type="javaee: full y-qualified-cl assType"/>
<xsd: choi ce m nCccurs="0" maxQccur s="unbounded" >
<xsd: el ement nane="t ag"
type="j avaee: facel et-taglib-tagType"/>
<xsd: el ement name="function"

type="j avaee: facel et-taglib-functi onType"/>

</ xsd: choi ce>
</ xsd: sequence>
</ xsd: choi ce>
<xsd: el ement nanme="t agl i b- ext ensi on"
type="j avaee: f acel et -t agl i b- ext ensi onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
<xsd:attribute name="version"
type="j avaee: facel et-taglib-versi onType"
use="required"/>
</ xsd: conpl exType>
<xsd: conpl exType nane="facel et -tagli b-ext ensi onType" >
<xsd: annot ati on>
<xsd: docurent ati on>
Ext ension el ement for facelet-taglib. It may contain
i npl erent ati on specific content.
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

Chapter A Appendix A - JSF Metadata

A-63

<xsd: conpl exType nane="facel et-taglib-tagType">
<xsd: annot ati on>
<xsd: docunent ati on>
If the tag library XM. file contains individual tag
decl arations rather than pointing to a library-class or a
decl aring a conposite-library name, the individual tags are
encl osed in tag el ements.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="t ag- nane" type="javaee: facel et-taglib-canoni cal - nameType"/ >
<xsd: choi ce>
<xsd: el ement nanme="handl er-cl ass"
type="javaee: fully-qualified-classType"/>
<xsd: el ement nanme="behavi or"
type="j avaee: facel et-tagli b-tag- behavi or Type"/ >
<xsd: el ement name="conponent"
type="j avaee: facel et-tagli b-tag-conponent Type"/ >
<xsd: el ement name="converter"
type="j avaee: facel et-taglib-tag-converterType"/>
<xsd: el ement nanme="val i dat or"
type="j avaee: facel et-taglib-tag-validatorType"/>
<xsd: el ement nanme="source" type="javaee:string"/>
</ xsd: choi ce>
<xsd: el ement name="attri bute"
type="j avaee:facel et-taglib-tag-attributeType"
m nCccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement nanme="t ag- ext ensi on"
type="j avaee: facel et-tagli b-tag-extensi onType"
m nCccur s="0"
maxQccur s="unbounded" / >
</ xsd: sequence>
</ xsd: conpl exType>

<|__ Rk R S b O kR SRR o S b S S R Rk kS R R S - >

<xsd: conpl exType nane="facel et-taglib-tag-attributeType">
<xsd: annot ati on>

<xsd: docunent ati on>

The attribute elenment defines an attribute for the nesting
tag. The attribute el enent may have several subel ements

| A-64 JavaServer Faces Specification *+ June 2009

def i ni ng:

description a description of the attribute

name the nanme of the attribute

required whet her the attribute is required or
opti ona

type the type of the attribute

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="nane"
type="j avaee:java-identifierType"/>
<xsd: el ement name="required"
type="j avaee: generi c- bool eanType"
m nCccur s="0">
<xsd: annot ati on>
<xsd: docunent at i on>

Defines if the nesting attribute is required or

optional .

If not present then the default is "false", i.e
the attribute is optional

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: choi ce>
<xsd: sequence>
<xsd: sequence m nCccurs="0">
<xsd: el ement nanme="type"
type="j avaee: ful l y-qualified-cl assType"
m nCccur s="0">
<xsd: annot ati on>
<xsd: docunent at i on>

Defines the Java type of the attributes val ue.
If this elenent is omtted, the expected type is

assunmed to be "java.l ang. Qbj ect"”.

Chapter A Appendix A - JSF Metadata

A-65

</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >

</ xsd: sequence>

</ xsd: sequence>

</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<xsd: conpl exType nane="facel et -tagli b-tag-ext ensi onType">
<xsd: annot at i on>
<xsd: docunent ati on>
Extension elenent for tag It nay contain
i mpl ement ati on specific content.
</ xsd: docunent at i on>

</ xsd: annot at i on>

<xsd: sequence>
<xsd: any namespace="##any"
pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<xsd: conpl exType nane="facel et-taglib-functionType">
<xsd: annot ati on>
<xsd: docunent ati on>
If the tag library XM. file contains individual function
decl arations rather than pointing to a library-class or a
decl aring a conmposite-library nane, the individual functions are
enclosed in function el ements.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="function- name" type="javaee:string"/>
<xsd: el ement nanme="functi on-cl ass"
type="javaee: fully-qualified-classType"/>

| A-66 JavaServer Faces Specification * June 2009

<xsd:

el enent nanme="function-signature" type="javaee:string"/>

</ xsd: sequence>

</ xsd: conpl exType>

<xsd: conpl exType nane="facel et-tagli b-tag-behavi or Type">

<xsd: annot ati on>

<xsd: docunent ati on>

W t hi

n a tag el enent, the behavior el enent encapsul ates

information specific to a JSF Behavi or.

</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd: sequence>

<xsd:

<xsd:

<xsd:

<xsd:

group ref="javaee: descripti onG oup"/>
el enent mi nCccurs="1" maxCccurs="1"
nane="behavi or-i d" type="j avaee:string"/>
el ement mi nCccurs="0" maxCccurs="1"
nane="handl er-cl ass" type="javaee:fully-qualified-classType"/>
el enent nane="behavi or - ext ensi on"
type="j avaee: facel et-tagl i b-tag- behavi or - ext ensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >

</ xsd: sequence>

</ xsd: conpl exType>

<xsd: conpl exType nanme="facel et -tagli b-tag- behavi or - ext ensi onType" >

<xsd: annot ati on>

<xsd:

docunent ati on>

Extensi on el enent for behavior. It nmay contain

npl enent ati on specific content.

</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: sequence>

<xsd:

any nanespace="##any"
pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<xsd: conpl exType nane="facel et -tagli b-tag- conponent Type" >

W t hi

<xsd: annot ati on>
<xsd: docunent ati on>
n a tag el ement, the conponent el enment encapsul at es

information specific to a JSF U Conponent .

</ xsd: docunent at i on>
</ xsd: annot ati on>

Chapter A Appendix A - JSF Metadata A-67

<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement name="conponent-type" type="javaee:string"/>
<xsd: el ement m nCccurs="0" nmaxCccurs="1"
nane="renderer-type" type="javaee:string"/>
<xsd: el ement m nCccurs="0" nmaxCccurs="1"
nane="handl er - cl ass"
type="javaee: fully-qualified-classType"/>
<xsd: el ement name="conponent - ext ensi on"
type="j avaee: facel et -t agl i b-tag- conponent - ext ensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >

</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nane="facel et-tagli b-tag-conponent -extensi onType">
<xsd: annot ati on>
<xsd: docunent ati on>
Ext ensi on el ement for component It may contain
i npl erent ati on specific content.
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<xsd: conpl exType nanme="facel et-taglib-tag-converterType">
<xsd: annot at i on>
<xsd: docunent at i on>
Wthin a tag el enent, the converter el enent encapsul ates
information specific to a JSF Converter.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement m nCccurs="1" maxCccurs="1"
nane="converter-id" type="javaee:string"/>
<xsd: el ement m nCccurs="0" maxCccurs="1"

nane="handl er - cl ass" type="javaee:fully-qualified-classType"/>

A-68 JavaServer Faces Specification * June 2009

<xsd: el ement name="convert er - ext ensi on”
type="j avaee: facel et-tagli b-tag-converter-extensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="facel et-taglib-tag-converter-extensi onType">
<xsd: annot ati on>
<xsd: docunent ati on>
Extensi on el enent for converter It may contain
i mpl ement ati on specific content.
</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: any namespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<xsd: conpl exType nane="facel et-tagli b-tag-validatorType">
<xsd: annot ati on>
<xsd: docunent ati on>
Wthin a tag el enent, the validator el enment encapsul ates
informati on specific to a JSF Validator.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: group ref="javaee: descri pti onG oup"/ >
<xsd: el ement m nCccurs="1" maxCccurs="1"
nane="val i dator-id" type="javaee:string"/>
<xsd: el ement m nCccurs="0" maxCccurs="1"
nane="handl er-cl ass" type="javaee:fully-qualified-classType"/>
<xsd: el ement name="val i dat or - ext ensi on"
type="j avaee: facel et-tagli b-tag-vali dator-extensi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nanme="facel et-taglib-tag-validator-extensionType">
<xsd: annot ati on>

<xsd: docunent ati on>

Chapter A Appendix A - JSF Metadata A-69

Ext ensi on el ement for validator It may contain
i mpl ement ati on specific content.
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1| ax"
m nCccur s="0"
maxQccur s="unbounded" />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ Rk I O S >

<xsd: si npl eType name="facel et-taglib-versi onType">
<xsd: annot ati on>
<xsd: docunent ati on>
This type contains the recogni zed versions of
facelet-taglib supported
</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd:restriction base="xsd:token">
<xsd: enuneration val ue="2.0"/>
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: conpl exType nane="facel et-tagli b-canoni cal - naneType" >

<xsd: annot ati on>

<xsd: docunent ati on>

Defines the canonical name of a tag or attribute being
def i ned.

The nanme nmust conformto the lexical rules for an NCNane

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: NCNane" >
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: ext ensi on>

</ xsd: si npl eCont ent >

A-70 JavaServer Faces Specification + June 2009

</ xsd: conpl exType>

</ xsd: schenma>

1.3

XML Schema Definition for Partial Responses

<xsd: schema

t ar get Nanespace="http://java. sun. coni xm / ns/j avaee"

xm ns:javaee="http://java. sun. com xm / ns/j avaee"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"

xm ns: xm ="http://ww. w3. or g/ XM_/ 1998/ nanespace"
el ement For nDef aul t =" qual i fi ed"

attri but eFor mDef aul t ="unqual i fi ed"

version="2.0">

<xsd: annot at i on>

<xsd: docunent ati on>

$Id: web-partialresponse_2_0.xsd,v 1.0 2008/12/04 21:12:50 rogerk Exp $

</ xsd: docunent at i on>

</ xsd: annot at i on>

<xsd: annot at i on>

<xsd: docunent ati on>

Copyright 2007 Sun M crosystens, Inc.,
901 San Antoni o Road,

Palo Alto, California 94303, U S A
Al rights reserved.

Sun M crosystens, Inc. has intellectual property

rights relating to technol ogy described in this document. In
particular, and without limtation, these intellectual
property rights may include one or nore of the U S. patents
listed at http://ww. sun. conf patents and one or nore

addi tional patents or pending patent applications in the
U.S. and other countries.

Thi s docunment and the technol ogy which it describes are
di stributed under licenses restricting their use, copying,
di stribution, and deconpilation. No part of this docunent
may be reproduced in any form by any means without prior
witten authorization of Sun and its licensors, if any.

Chapter A Appendix A - JSF Metadata

A-71

Third-party software, including font technol ogy, is
copyrighted and |icensed from Sun suppliers

Sun, Sun M crosystems, the Sun |ogo, Solaris, Java, Java EE
JavaServer Pages, Enterprise JavaBeans and the Java Coffee
Cup logo are trademarks or registered tradenmarks of Sun

M crosystens, Inc. in the U S and other countries

Federal Acquisitions: Commercial Software - Government Users
Subj ect to Standard License Terns and Conditi ons.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: annot ati on>

<xsd: docunent ati on>

<! [CDATA[

The XML Schema for the JavaServer Faces (Version 2.0)
Partial Response used in JSF Aj ax franeworks

11>

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: i ncl ude schenaLocati on="j avaee_5. xsd"/>

<|__ Rk I O S >

<xsd: el ement name = "partial -response" type="javaee: partial -responseType">
<xsd: annot at i on>

<xsd: docunent ati on>

The "partial -response” elenent is the root of the partial
response information hierarchy, and contains nested el enents for all
possi bl e el ements that can exist in the response

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el emrent >

<|__ Rk S O >

A-72 JavaServer Faces Specification + June 2009

<xsd: conpl exType nane="parti al -responseType" >
<xsd: annot ati on>

<xsd: docunent ati on>

The "partial -response” elenent is the root of thei partia
response information hierarchy, and contains nested el enents for al
possi bl e el enents that can exist in the response

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: choi ce>
<xsd: el ement name="changes"
type="j avaee: parti al -response- changesType"
m nCccur s="0"
maxQccur s="1"/>
<xsd: el ement name="redirect"
type="j avaee: parti al -response-redirect Type"
m nCccur s="0"
maxQccur s="1"/>
<xsd: el ement name="error"
type="j avaee: parti al -response-errorType"
m nCccur s="0"
maxQccur s="1"/>
</ xsd: choi ce>
</ xsd: conpl exType>

<xsd: conpl exType nane="parti al -response-changesType" >
<xsd: choi ce mi nQccurs="0" maxCccur s="unbounded" >
<xsd: el enent nanme="updat e"
type="j avaee: parti al -response- updat eType"/ >
<xsd: el erent nanme="insert"
type="j avaee: partial -response-insert Type"/ >
<xsd: el emrent nane="del ete"
type="j avaee: parti al -response- del et eType"/ >
<xsd: el ement name="attri butes"
type="j avaee: partial -response-attributesType"/>
<xsd: el ement nanme="eval " type="xsd:string">
<xsd: annot ati on>
<xsd: docunent ati on>

The "eval " el enent enables this elenent's contents to be executed
as JavaScript.

</ xsd: docunent ati on>

Chapter A Appendix A - JSF Metadata A-73

</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="ext ensi on"
type="j avaee: parti al -response- ext ensi onType"/ >
</ xsd: choi ce>
</ xsd: conpl exType>

<xsd: conpl exType nanme="parti al -response- updat eType" >
<xsd: annot at i on>

<xsd: docunent ati on>

The "update" el enent enabl es DOM el emrents matching the "id"
attribute to be updated with the contents of this el enent.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd:string">

<xsd:attribute nane="id" type="xsd:string" use="required"/>

</ xsd: ext ensi on>

</ xsd: si npl eCont ent >

</ xsd: conpl exType>

<xsd: conpl exType nanme="partial -response-insert Type">
<xsd: annot at i on>

<xsd: docunent ati on>

The "insert" el enent enables content to be inserted into the DOM
before or after an existing DOM el enent as specified by the
nested "before" or "after" elements. The elements "before" and
"after" are nmutually exclusive - one of them nust be specified.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: choi ce m nCccurs="1" maxCccurs="1">
<xsd: el ement name="before">
<xsd: conpl exType>
<xsd:attribute nane="id" type="xsd:string" use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="after">
<xsd: conpl exType>
<xsd:attribute nane="id" type="xsd:string" use="required"/>
</ xsd: conpl exType>

A-74 JavaServer Faces Specification + June 2009

</ xsd: el enent >
</ xsd: choi ce>

</ xsd: conpl exType>

<xsd: conpl exType nanme="parti al -response-del et eType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The "del ete" el enent enabl es DOM el erents matching the "id"

attribute to be renoved.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute nane="id" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nanme="parti al -response-attri but esType">

<xsd: annot ati on>
<xsd: docunent ati on>

The "attributes" el ement enables attributes of DOMel enents mat ching the "id"
attribute to be updated. |If this elenent is used, then it nust contain at
"attribute" el ement.

| east one
</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>

<xsd: el enent nane="attribute" maxQccur s="unbounded" >

m nCccur s="1"

<xsd: conmpl exType>
<xsd: attri bute nane="nane" type="xsd:string" use="required"/>

<xsd: attribute nane="val ue" type="xsd:string" use="required"/>

</ xsd: conpl exType>
</ xsd: el enent >

</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="parti al -response-redirect Type">

<xsd: annot ati on>
<xsd: docunent ati on>

The "redirect" el ement enables a redirect to the [ocation as specified by the

"url" attribute.

</ xsd: docunent ati on>
Chapter A Appendix A - JSF Metadata A-75

</ xsd: annot ati on>
<xsd:attribute nane="url" type="xsd:anyURl" use="required"/>
</ xsd: conpl exType>

<xsd: conpl exType name="parti al -response-error Type">
<xsd: annot at i on>

<xsd: docunent ati on>

The "error" element contains error information fromthe server.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="error-nane" type="xsd:string" m nQccurs="1" maxQccurs="1"/>

<xsd: el ement name="error-nessage" type="xsd:string" m nQOccurs="1" maxCccurs=
LIRS

</ xsd: sequence>

</ xsd: conpl exType>

<xsd: conpl exType name="parti al -response- ext ensi onType" >
<xsd: annot ati on>
<xsd: docunent ati on>
Ext ensi on el ement for partial response. It may contain
i mpl ement ati on specific content.
</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: any nanespace="##any"

pr ocessCont ent s="1 ax"
m nCccur s="0"
maxCccur s="unbounded” />

</ xsd: sequence>

<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

</ xsd: schema>

| A-76 JavaServer Faces Specification + June 2009

1.4 XML Schema Definition for Composite Components

<xsd: schema
t ar get Nanespace="http://java. sun. conl xm / ns/j avaee"
xm ns:javaee="http://java. sun. conf xm / ns/j avaee"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: xm ="http://ww. w3. or g/ XM_/ 1998/ nanespace"
el ement For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed"
version="2.0">

<xsd: annot ati on>
<xsd: docunent at i on>
$ld: web-facesui conmponent _2_0.xsd,v 1.1.8.2 2008/03/20 21:12: 50 edburns Exp $
</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: annot at i on>

<xsd: docunent ati on>

Copyright 2007 Sun M crosystens, Inc.,
901 San Antoni o Road,

Palo Alto, California 94303, U S A
Al rights reserved.

Sun M crosystens, Inc. has intellectual property

rights relating to technol ogy described in this document. In
particular, and without limtation, these intellectual
property rights may include one or nore of the U S. patents
listed at http://ww. sun. conf patents and one or nore

addi tional patents or pending patent applications in the
U.S. and other countries.

Thi s docunment and the technol ogy which it describes are
di stributed under licenses restricting their use, copying,
di stribution, and deconpilation. No part of this docunent
may be reproduced in any form by any means without prior
witten authorization of Sun and its licensors, if any.

Third-party software, including font technol ogy, is

copyrighted and |icensed from Sun suppliers.

Sun, Sun M crosystens, the Sun |ogo, Solaris, Java, Java EE,

Chapter A Appendix A - JSF Metadata A-77

JavaServer Pages, Enterprise JavaBeans and the Java Coffee
Cup logo are trademarks or registered tradenarks of Sun
M crosystenms, Inc. in the U S. and other countries.

Federal Acquisitions: Commercial Software - Government Users
Subj ect to Standard License Terns and Conditi ons.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: annot ati on>

<xsd: docunent ati on>
<! [CDATA]
The XM. Schenma for a JavaServer Faces U Conponent (Version 2.0).

The elenents in this schema nmay be used in an XHTM. page for

a conposite component, by pulling in the conposite nanespace

<htm xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: conposite="http://java. sun.conijsf/conposite">

<conposite:interface>
<conposite:attribute name="foo" default="bar" />
</ conposite:/interface>
<l-- the rest omtted -->
</htm >

The elenents in this schema nmay al so be used in a facelet taglibrary
file in the sane nanner:

<facelet-taglib xm ns="http://java. sun. comf xnm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: conposite="http://java. sun. conl j sf/ conposite"

Xxsi : schemalLocati on="http://java. sun. com xm / ns/j avaee
http://java. sun. conml xm / ns/javaee/ web-facel ettaglibary_2_ 0. xsd"

version="2.0">
<nanespace>http://domai n. com t est _schema</ nanespace>
<t ag>
<t ag- nane>t est Schena</ t ag- nane>
<conponent >
<conponent -t ype>j avax. f aces. | nput </ conponent -t ype>
<renderer-type>j avax. f aces. Text </ renderer-type>

<handl er - cl ass>com sun. f aces. facel ets. tag.j sf. Conponent Handl er </ handl er - cl ass>

| A-78 JavaServer Faces Specification * June 2009

<conponent - ext ensi on>

<conposite:attribute name="foo" default="bar" />

</ conmponent - ext ensi on>
</ conponent >
</tag>

</facel et-taglib>

The instance docunents nay indicate the published
version of the schema using xsi:schemaLocation attribute
for javaee nanmespace with the follow ng | ocation:

http://java. sun. conl xm / ns/j avaeel/ web- f acesui conponent _2_0. xsd

11>

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd:incl ude schenaLocati on="j avaee_5. xsd"/>

<|__ Rk I O >

<xsd: el ement name = "attribute" type="javaee: ui conponent-attributeType">
</ xsd: el enent >

<|__ Rk S R S S Sk R R S ok S S R S R S S ->

<xsd: conpl exType nane="ui conponent-attributeType">
<xsd: annot ati on>

<xsd: docunent ati on>

The "attribute" elenment declares an attribute of this

ui comnponent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el enent nane="attribute"
type="j avaee: ui conponent - attri but eType"/ >
</ xsd: choi ce>

<xsd: attri bute nane="nane"

Chapter A Appendix A - JSF Metadata A-79

type="xsd: string"
use="required"/>

<xsd: attri bute nane="di spl ayNane"
type="xsd: string"
use="optional "/ >

<xsd: attri bute nane="short Description"
type="xsd: string"
use="optional "/ >

<xsd:attribute name="defaul t"
type="xsd: string"
use="optional "/ >

<xsd: attri bute nane="net hod-si gnature"
type="xsd: string"
use="optional ">

<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA]

Provi des the signature of the Java nethod. The syntax of
the nethod-signature element is as follows (taken from
function-signature in web-jsptaglibrary_2 1.xsd):

Met hodSi gnature ::= ReturnType S Met hodNane S?
(' S? Parameters? S? ')

Ret ur nType = Type
Met hodNane = ldentifier
Par anet ers = Par amet er
| (Paraneter S? ',' S? Paraneters)
Par anet er = Type
Wher e:

* Type is a basic type or a fully qualified
Java cl ass nane (including package nane),
as per the 'Type' production in the Java
Language Specification, Second Edition,

A-80 JavaServer Faces Specification *+ June 2009

Chapter 18.

* |dentifier is a Java identifier, as per
the 'lIdentifier' production in the Java
Language Specification, Second
Edi tion, Chapter 18.

Exanpl e:

java.lang. String ni ckNane(java.lang.String, int)

11>
</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd:attribute>

<xsd: attribute nane="appl yTo"
type="xsd: string"
use="optional "/ >

<xsd: attribute nane="required"
type="xsd: bool ean"
use="optional "/ >

<xsd: attribute nane="preferred"
type="xsd: bool ean"
use="optional "/ >

<xsd: attribute nane="expert"

type="xsd: bool ean"
use="optional "/ >

</ xsd: conpl exType>

<|__ Rk I O O O S >

</ xsd: schenma>

Chapter A Appendix A - JSF Metadata A-81

A-82 JavaServer Faces Specification + June 2009

Appendix B - Change Log

2.1

2.1.0.1

Changes Between 1.1 and 1.2

Unified Expression Language (EL)

Previous versions of the JavaServer Faces included an innovative, EL tailored to the needs of Faces. The main emphasis
of this version of the Faces spec, and also the focus of the JSP spec corresponding to it, is to take those innovations and
expose them to JSP page authors by creating a Unified EL that leverages the combined power of the Faces and JSP ELs.
The Faces EL would then be deprecated, and the deprecated implementation would be written in terms of the Unified EL
to preserve backwards compatability.

Guide to Deprecated Methods Relating to the Unified EL and their Corresponding
Replacements

The following classes and methods have been deprecated:
= javax. faces. el .Eval uati onExcepti on
« replaced by: j avax. el . ELExcepti on
= javax. faces. el .Met hodBi ndi ng
« replaced by: j avax. el . Met hodExpr essi on
= javax. faces. el .Met hodNot FoundExcepti on
« replaced by: j avax. el . Met hodNot FoundExcept i on
= javax. faces. el .PropertyNot FoundExcepti on
« replaced by: j avax. el . Propert yNot FoundExcepti on
= javax. faces. el .PropertyResol ver
« replaced by: j avax. el . ELResol ver
= javax. faces. el .Ref erenceSynt axExcepti on
« replaced by: j avax. el . ELExcepti on
= javax. faces. el .Val ueBi ndi ng
« replaced by: j avax. el . Val ueExpr essi on
= javax. faces. el .Vari abl eResol ver
« replaced by: j avax. el . ELResol ver

Chapter B Appendix B - Change Log B-83

javax. faces. application. Application. creat eConponent (Val ueBi ndi ng
conponent Bi ndi ng, FacesContext context, String conponent Type)

« replaced by: j avax. f aces. appl i cati on. Appl i cati on. creat eConponent (Val ueExpr essi on
conponent Expr essi on, FacesContext context, String conponentType)

javax. faces. application. Application. creat eMet hodBi ndi ng
« replaced by: j avax. faces. appl i cati on. Applicati on. creat eMet hodExpr essi on
javax. faces. application. Appli cation. creat eVal ueBi ndi ng

« replaced by calling: j avax. f aces. appl i cati on. Appl i cati on. get Expressi onFactory then
Expressi onFact ory. cr eat eVal ueExpr essi on

« see Javadoc for j avax. f aces. appl i cati on. Appli cati on. cr eat eVal ueBi ndi ng

javax. faces. application. Application. get PropertyResol ver

« replaced by: j avax. f aces. appl i cati on. Appli cati on. get ELResol ver

javax. faces. application. Application. set PropertyResol ver

« see Javadoc for j avax. faces. appl i cati on. Appli cation. set PropertyResol ver

javax. faces. application. Application. getVari abl eResol ver

« replaced by: j avax. faces. appl i cati on. Applicati on. get ELResol ver

javax. faces. application. Application. setVari abl eResol ver

« see Javadoc for j avax. f aces. appl i cation. Applicati on. set Vari abl eResol ver

j avax. f aces. conponent . Acti onSour ce. get Acti on

« replaced by: j avax. f aces. conponent . Acti onSour ce2. get Acti onExpr essi on

j avax. f aces. conponent . Acti onSour ce. set Acti on

« replaced by: j avax. f aces. conponent . Acti onSour ce2. set Acti onExpr essi on

j avax. faces. conponent . Acti onSour ce. get Acti onLi st ener

« replaced by: j avax. f aces. conponent . Acti onSour ce. get Acti onLi st eners

« see Javadoc for j avax. f aces. conponent . Acti onSour ce. get Acti onLi st ener

j avax. f aces. conponent . Acti onSour ce. set Acti onLi st ener

« replaced by: j avax. f aces. conmponent . Acti onSour ce. addAct i onLi st ener

j avax. f aces. conponent . Edi t abl eVal ueHol der. get Val i dat or

« replaced by: j avax. f aces. conponent . Edi t abl eVal ueHol der. get Val i dator s

« see Javadoc for: j avax. f aces. conponent . Edi t abl eVal ueHol der . get Val i dat or

j avax. f aces. conponent . Edi t abl eVal ueHol der. set Val i dat or

« replaced by: j avax. f aces. conponent . Edi t abl eVal ueHol der. addVal i dat or

« see Javadoc for: j avax. f aces. component . Edi t abl eVal ueHol der . set Val i dat or

j avax. f aces. conponent . Edi t abl eVal ueHol der. get Val ueChangelLi st ener

« replaced by: j avax. f aces. conponent . Edi t abl eVal ueHol der . get Val ueChangeli st eners
« see Javadoc for: j avax. f aces. conponent . Edi t abl eVal ueHol der . get Val ueChangelLi st ener
j avax. f aces. conponent . Edi t abl eVal ueHol der. set Val ueChangelLi st ener

« replaced by: j avax. f aces. conponent . Edi t abl eVal ueHol der . addVal ueChangeli st ener
« see Javadoc for: j avax. f aces. conponent . Edi t abl eVal ueHol der . set Val ueChangelLi st ener
j avax. faces. conponent . U Conmand. get Acti on

« replaced by: j avax. f aces. conponent . U Command. get Act i onExpr essi on

j avax. faces. conponent . U Conmand. set Acti on

« replaced by: j avax. f aces. conponent . Ul Conmand. set Act i onExpr essi on

j avax. f aces. conponent . U Command. get Acti onLi st ener

| B-84 JavaServer Faces Specification « June 2009

« replaced by: j avax. f aces. conponent . U Command. get Acti onlLi st eners

« see Javadoc for: j avax. f aces. component . U Conmand. get Act i onLi st ener

= javax. faces. component. U Comrand. set Acti onLi st ener

« replaced by: j avax. f aces. conponent . U Conmand. addAct i onLi st ener

« see Javadoc for: j avax. f aces. conmponent . U Command. set Acti onLi st ener

= javax. faces. conponent. U Conponent Base. get Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . U Conponent Base. get Val ueExpr essi on

= javax. faces. conmponent. U Conponent Base. set Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . Ul Conponent Base. set Val ueExpr essi on

= javax. faces. conponent. U Conponent . get Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . U Conponent . get Val ueExpr essi on

= javax. faces. conponent. U Conponent . set Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . U Conponent . set Val ueExpr essi on

= javax. faces. conmponent. U Dat a. set Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . Ul Dat a. set Val ueExpr essi on

= javax. faces. conponent. U G aphi c. get Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . U G aphi c. get Val ueExpr essi on

= javax. faces. conponent. U G aphi c. set Val ueBi ndi ng

« replaced by: j avax. faces. conponent. U G aphi c. set Val ueExpr essi on

= javax. faces. conponent. U I nput. get Val i dat or

« replaced by: j avax. f aces. conponent . Ul | nput . get Val i dat or s

« see Javadoc for: j avax. f aces. conponent. Ul | nput . get Val i dat or

= javax.faces. conmponent. Ul I nput. set Val i dat or

« replaced by: j avax. f aces. conponent. Ul | nput . addVal i dat or

« see Javadoc for: j avax. f aces. conponent. Ul | nput . set Val i dat or

= javax. faces. conmponent. Ul | nput. set Val ueChangelLi st ener

« replaced by: j avax. f aces. component . Ul | nput . addVal ueChangelLi st ener

« see Javadoc for: j avax. f aces. conponent . Ul | nput . set Val ueChangelLi st ener

= javax. faces. conponent. Ul Sel ect Bool ean. get Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . Ul Sel ect Bool ean. get Val ueExpr essi on

= javax. faces. conponent. Ul Sel ect Bool ean. set Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . Ul Sel ect Bool ean. set Val ueExpr essi on

= javax. faces. conponent. Ul Sel ect Many. get Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . Ul Sel ect Many. get Val ueExpr essi on

= javax. faces. conponent. Ul Sel ect Many. set Val ueBi ndi ng

« replaced by: j avax. f aces. conponent . Ul Sel ect Many. set Val ueExpr essi on

New Methods not replacing a Deprecated methods:

= j avax
= javax
= j avax
= j avax

.faces

. faces.

.faces

.faces.

. conponent .
conponent .
. conponent .
conponent .

Ul Vi ewRoot

Ul Vi ewRoot

. get Bef or ePhaseli st ener
Ul Vi ewRoot .

set Bef or ePhaseli st ener

. get Aft er PhaselLi st ener
Ul Vi ewRoot .

set Aft er Phaseli st ener

Chapter B Appendix B - Change Log

B-85

Guide to Deprecated Methods Relating to State Management and their Corresponding
Replacements

The following classes and methods have been deprecated:
= javax.faces. application. StateManager. Seri al i zedVi ew

« replaced by j ava. | ang. Qbj ect that implements j ava. i 0. Seri al i zabl e
= javax.faces. application. Stat eManager. saveSeri al i zedVi ew

« replaced by j avax. f aces. appl i cati on. St at eManager . saveVi ew
= javax.faces. application. StateManager. get TreeStruct ureToSave

» The separation between tree structure and component state is now a recommended implementation detail.
= javax. faces. application. St at eManager. get Conponent St at eToSave

» The separation between tree structure and component state is now a recommended implementation detail.
= javax.faces.application. StateManager.witeState that takes a SerializedView

« replaced by j avax. f aces. appl i cati on. St at eManager. wri t eSt at e that takes a
j ava. | ang. Qbj ect that implements Seri al i zabl e.

= javax.faces. application. StateManager.restoreTreeStructure

» The separation between tree structure and component state is now a recommended implementation detail.
= javax.faces. application. St at eManager. r est or eConponent St at e

» The separation between tree structure and component state is now a recommended implementation detail.

= javax. faces.render. ResponseSt at eManager. witeState that takes a
javax. faces. application. St at eManager. Seri al i zedVi ew

« Replaced by j avax. f aces. render. ResponseSt at eManager . witeState that takes a
java. | ang. Obj ect that implements j ava. i 0. Seri al i zabl e.

= javax. faces.render. ResponseSt at eManager. get TreeStruct ureToRest ore

= The separation between tree structure and component state is now a recommended implementation detail.
Semantically has been replaced by j avax. f aces. r ender . ResponseSt at eManager . get St at e.

= javax. faces.render. ResponseSt at eManager . get Conponent St at eToRest or e

= The separation between tree structure and component state is now a recommended implementation detail.
Semantically has been replaced by j avax. f aces. r ender . ResponseSt at eManager . get St at e.

JavaServer Faces 1.2 Backwards Compatibility

= Faces 1.2 is backwards compatible with Faces 1.1. This means that a web-application that was developed to run with
Faces 1.1 won’t require any modification when run with Faces 1.2 except in the cases described in the following
section.

= Note that Faces is a part of the Java EE platform as of Faces 1.2. A web application therefore does not need to bundle
a Faces implementation anymore when it runs on a web container that is Java EE technology compliant. Should a
Faces implementation be bundled with a web-application, it will simply be ignored as the Faces implementation
provided by the platform always takes precedence.

= The JSP aspects of backwards compatability are described in the JSP specification in the Preface, in the section titled
“Backwards Compatability with JSP 2.0”.

Breakages in Backwards Compatability

= In Faces 1.1 you could override implicit objects in your custom resolvers. For example, for the following expression:
${parani‘ x’]} you could change the meaning of par amin your custom Var i abl eResol ver. In Faces 1.2,
implicit objects are always recognized - so par am will always mean a map of parameters. See Section 5.3 “The
Managed Bean Facility”

| B-86 JavaServer Faces Specification « June 2009

In Faces 1.1, any custom resolvers that do not honor the “decorator” pattern - that is, delegate to their parent resolver,
will still work in Faces 1.2 with the following clarification: those resolvers would operate independently with regards
to other resolvers in the chain. See Section 5.6.1 “Faces ELResolver for JSP Pages”.

In Faces 1.1 it was valid to call set Vari abl eResol ver () or set PropertyResol ver () on the
Appl i cati on at any point in the application’s lifetime. This allowed for the application to be in an indeterminate
state. In Faces 1.2, neither of these methods may be called after the application has served any requests.

In Faces 1.1, if a view couldn’t be restored due to session expiration, we’d create a new one and go to render
response. In 1.2, this is not the case. We now throw a Vi ewExpi r edExcept i on. 1.1-based applications may rely
on the old behavior to forward to a login page when a session expired. 1.2 circumvents this.

General changes

The numbers in the text below refer to issue numbers in the issue tracker found at <https://javaserverfaces-spec-
public.dev.java.net/servlets/Projectlssues>.

2 - Clarify that for client side state saving, the state should be encrypted for security.
3 - Clarify the specification with respect to constraint violations for tags in the Core Tag Library.

4 - Added header Cl ass and f oot er O ass attributes at the “h:column” level. Please see Section 8.6 “Standard
HTML RenderKit Implementation” for more details.

5 - Clarified the use of a string literal for the “action” attribute on ActionSource components.

6 - Introduced a new optional “label” attribute for input components that will provide an association between a
component, and the message that the component (indirectly) produced. Please refer to Section 8.6 “Standard HTML
RenderKit Implementation” and Section 2.5.2.4 “Localized Application Messages” for more details.

8 - Made UViewRoot a source of PhaseEvent(s) for all phases of the request processing lifecycle except RestoreView.
Provided additional “before” and “after” phase listener attributes for the <f:view> tag. Please see Section 4.1.19
“UlViewRoot” for more details.

9 - Clarified the behavior of PhaseListener implementations in the following way: they must guarantee that if
“beforePhase()” is called, then “afterPhase()” must also be called, regardless of any thrown exceptions. Please see
Section 12.3 “PhaseListener” for more specifics.

11 - Provide a unique window identifier (in addition to the “viewid”) to accomodate applications that have mutiple
instances of the same view, but perhaps in different browser windows or frames.

13 - Specified “by type” converter registration for BigDecimal and BigInteger.

15 - Enhanced the usage of the “Decorator Pattern” for ViewHandler, StateManager and ResponseWriter classes by
providing abstract wrapper classes to make it easier to override a subset of the total methods for those classes. Please
see Section 11.4.6 “Delegating Implementation Support” for more details.

16 - Provided additional 118n attributes “dir and “lang” for the tags: <h:outputText>, <h:outputFormat>,
<h:messages>, <h:message>. Please see Section 8.6 “Standard HTML RenderKit Implementation” for descriptions of
these components.

17 - Introduced a new optional “layout” attribute on the “PanelGroup” component that controls the rendering of either
a “div” or “span” HTML element. Please see Section 8.6 “Standard HTML RenderKit Implementation” for more
details.

18 - When a resource lookup is done on the java.util.Map (loaded from <f:loadBundle>) using a key, and the key is
not found in the Map, return the literal string ???KEY??? where KEY is the key being looked up in the Map (instead
of throwing a MissingResourceException). Throw a JspException if the named bundle identified by <f:loadBundle>
does not exist. Please see Section 9.4.7 “<f:loadBundle>".

20 - Specify that the event queue should be cleared after each phase (except RestoreViewPhase and RenderResponse)
if “responseComplete” or “renderResponse” has been set on the FacesContext.

21 - Provided an additional “binding” attribute for the core Converter, Listener and Validator tags that would be used
as a ValueExpression to alternatively create the Converter, Listener or Validator instance. Please see Section 9.4 “JSF
Core Tag Library” for more details.

Chapter B Appendix B - Change Log B-87

27 - <h:messages> now renders HTML list elements (“",””) if the “layout” attribute is “list” or the “layout”
attribute is not specified. If the “layout” is “table”, an HTML “table” element is rendered instead of an outer “span”.
Please see Section 8.6 “Standard HTML RenderKit Implementation” for more details.

29 - Allow the use of user-defined “onclick” Javascript on CommandLink.

99 G

30 - Make the “commandButton” “image” attribute render the same as the “graphiclmage” “img” attribute for
consistency. Please see Section 8.6 “Standard HTML RenderKit Implementation” for more information.

35 - Provided a new facet for DataTable Renderer that allows the rendering of a table “caption” element immediately
following the “table” element. Also provided style sheet attributes for this new element. Please see Section 8.6
“Standard HTML RenderKit Implementation” for a descrption of this component.

43 - Migrated over to using XML Schema (from DTD) for configuation file validation. Please see Section 1.1 “XML
Schema Definition for Application Configuration Resource file”.

45 - Avoided concurrent read issues by using a java.util.HashMap instead of java.util. WeakHashMap for a
component’s Property Descriptor Map. This also fixes the performance problem as identified in the forum. Please
refer to the Property Descriptor methods and the constructor in

j avax. f aces. conponent . U Conponent Base.

47 - Introduced a mechanism to detect if a request is a postback.

48 - Specify the algorithm used for client id generation as well as provide a way to allow the page author to specify
exactly what the client Id should be, and preventing Faces from altering it.

50 - Allow an application to specify multiple render kits by introducing an optional “renderKitld” attribute on
“<fiview>". It is no longer required to write a custom ViewHandler to incorporate a different render kit. Please refer
to Section 8.4 “ResponseStateManager” and Section 9.4.21 “<f:view>" for more details.

51 - Clarify the specification with respect to “Application Startup Behavior”. Allow implementations to check for the
presence of a servlet-class definition in a web application deployment descriptor as a means to abort the configuration
and save startup time.

54 - Added new extension elements to the Faces XML schema. Please see Section 1.1 “XML Schema Definition for
Application Configuration Resource file”.

55 - For postback requests, in the “RestoreViewPhase”, during Val ueExpr essi on examination for each
component in the component tree, specify that calling the set Val ue() method on each Val ueExpr essi on,
should be done in a “parent-first” fashion, calling the set Val ue() method and then traversing the children.

58 - Enabed “protected” access to internal “DataModel” in UlData.

59 - Avoid EL expression evaluation for “value” attribute on “AttributeTag”. “AttributeTag” now passes the
expression to UIComponent for evaluation.

65 - Added standard converter messages. Please see Section 2.5.2.4 “Localized Application Messages” for more
details.

66 - Specified that “FormRenderer” must render the “name” attribute with the same value as the “id” attribute. Please
see Section 8.6 “Standard HTML RenderKit Implementation” for more details.

67 - Allow the resetting of an input component’s value by introducing a r eset Val ue() method on Ul | nput .

68 - Specify that the component tree may be manipulated throughout the request processing lifecycle, except during
render. Please see Section 2.2.6 “Render Response” for more details.

69 - Permit the passing of @ nul | wvalue to Sel ect|tem set Val ue() .
72 - Improve XHTML compliance by rendering both “lang” and “xml:lang” attributes.

73 - Added a new FacesException - “javax.faces.application. ViewExpiredException”. Specified that implementations
must throw this exception when an attempt to restore a view results in failure on postback. Please see Section 2.2.1
“Restore View” for more details.

74 - Added “disabled” property to “outputLink” and “commandLink”. Please see Section 8.6 “Standard HTML
RenderKit Implementation” for more details.

75 - Added “getRequestContentType” and “getResponseContentType” to ExternalContext.

78 - Added a more “user-friendly” default error message for Ullnput “update model”. Please see Section 2.5.2.4
“Localized Application Messages” for more details.

| B-88 JavaServer Faces Specification « June 2009

80 - Specify that the JSF Core Tag Library must not contain any tags that cause JavaScript to be rendered to the
client.

81 - Enable the message displayed for “required” validation, conversion, and validation to be overridden by the page
author (JSP or non-JSP)

82 - Added new feature, the ability to resolve ResourceBundles via the EL without the use of the <f:loadBundle> tag.

84 - Added render ed attribute to the core f : ver bat i m tag. Please see Section 9.4 “JSF Core Tag Library” for
more details.

85 - Add new tag: fisetPropertyActionListener. Useful for pushing values into managed beans without allowing
modification of the value.

86 - Specified that “OutputLinkRenderer” must render the “name” attribute with the same value as the “id” attribute.
Please see Section 8.6 “Standard HTML RenderKit Implementation” for more details.

87 - Modified specification for the set Vari abl eResol ver () and set PropertyResol ver () methods on
Appl i cati on to state that they may not be called after the application has served any requests.

93 - Added “escape” flag indicating the text of UlSelectltem should be escaped when rendering.

95 - Allow multiple instances of FacesSer vl et in a single webapp, mapped with different URI mappings, to use
different implementations of Li f ecycl e by allowing the lifecycle-id to be specified as an i ni t - par amin addition
to the existing way of specifying it as a cont ext - par am

98 - Specified that “SelectManyCheckboxListRenderer: and “RadioRenderer” must render the “label” element after
the “input element for each “Selectltem. Specified that the “label” element must refer to the “input” element using the
“for” attribute. Please see Section 8.6 “Standard HTML RenderKit Implementation” for more details.

99 - Specified Java EE 5 Generics usage where applicable.

105 - Specified that for commandButton rendering, the “image” attribute value must not be escaped. Specified that for
graphicImage rendering, the “src” attribute value must not be escaped.

108 - Specified that JSF implementations that are part of a Java EE technology-compliant implementation are
required to validate the application resource file against the XML schema for structural correctness. Also specified
that validation is recommended, but not required for JSF implementatons that are not part of a Java EE technology
compliant implementation. Please refer to Section 11.4.2 “Application Startup Behavior” for more details.

111 - Specified that a component must allow child components to be added to and removed from the child list of the
current component, even though the child component returns null from getParent().

118 - Specified that an implementation of Map returned from ExternalContext.getSessionMap implement a “clear”
method that calls “removeAttribute” on each attribute in the Servlet or Portlet session.

119 - Specified that implementations running in a JSR-250 compliant container have their managed bean methods
annotated with @PostConstruct be called after the object is instantiated, and after injection is performed, but before
the bean is placed into scope. Specified that methods annotated with @PreDestroy be called when the scope for the
bean is ending.

120 - Specified in the renderkit docs that commandButton rendering can generate javascript for “onclick” attribute.
122 - Clarified renderkit docs with respect to what gets rendered for disabled command link attributes.

123 - Clarified renderkit docs with respect to dataTable attribute rendering.

124 - Clarified renderkit docs with repsect to graphiclmage “alt” attribute.

131 - Specified that a compliant implementation must allow the registration of a converter for class java.lang.String
and java.lang.String. TYPE that will be used to convert values for these types.

133 - Removed the incorrect statement: “"It is the callers responsibility to ensure that setViewld() is called on the
returned view, passing the same viewld value." pertaining to ViewHandler.createView()

134 - Fixed backwards compatability issues.
135 - Support Java EE 5 enums as valid types/

138 - Change the required return type for action methods to be Object instead of String. This allows the usage of
Enums for the return type of action methods, as long as the toString() method of the enum matches the expected value
in the application configuration resources.

Chapter B Appendix B - Change Log B-89

= 145 - Define new method on UIComponent, invokeOnComponent(). This will find a component in the tree by clientld
and invoke a user specified callback on it. Please see Section 3.1.8 “Component Tree Navigation” and Section 4.1.1.3
“Methods” [of UlData] for more details.

» jsf-ri 127 - Specify that FacesContext methods getClientldsWithMessages() and getMessages() must be implemented
using order-preserving structures so the items in the iterator are returned in the order they were added with
addMessage().Spec document changes

= 147 - Clarified grammer with respect to component id.
= 151 - Specified standard converter for Enums

= 152 - Specified EL coercion usage in API javadocs UlSelectOne/UISelectMany (when items are compared in
validation) and standard html renderkit docs during encoding of select components.

= 154 - Fixed FacesTag “name” attribute discrepency - made it a String (was ValueExpression).

= 155 - Specified “columnClasses”, “rowClasses” descriptions for panelGrid in renderkit docs.

= 160 - Added and specified ResponseWriter.writeText method that takes a UIComponent argument.

= The TLDDocs for the h: tag library are now a normative part of the spec.

Following is a section by section breakdown of the main changes since the last release of this document. This work was
done mainly to support changes in tree creation and content interweaving for JSP based faces applications, as well as for
fixing the following issues from the above list: 23456 89 11 13 1516 17 18 20 21 27 29 30 35 43 45 47 48 50 51 53

54 55 58 59 65 66 67 68 69 72 73 74 75 78 80 81 82 84 85 86 93 9598 99 105 108 111 118 119 120 122 123 124 131
133 134 135 138 145 147 151 152 154 155 160.

Preface

» Added new section: Guide to Deprecated Methods Relating to State Management and their Corresponding
Replacements.

Section 2.2.1 “Restore View”

= Do per-component actions in a "parent-first" fashion, calling the setValue() method and *then* traversing the
children.

= Describe the new responsibilities of this phase with respect to the new StateSaving changes.
= Describe when ViewHandler.initView() is to be called.

= Describe how the ViewHandler.calculateRenderKitld() and ResponseStateManager.isPostback() method are to be
used.

= Specify that implementations must throw j avax. f aces. appl i cati on. Vi ewExpi r edExcepti on when an
attempt to restore a view results in failure on postback.

Section 2.2.6 “Render Response”

= Specify that the component tree may be manipulated throughout the request processing lifecycle, except during
render.

Section 2.4.2.1 “Create A New View”

Document that multiple renderkits are supported.

| B-90 JavaServer Faces Specification « June 2009

Section 2.5.2.4 “Localized Application Messages”

Added updates to standard messages; Also mentioned new parameter substitution token for the generic input component
attribute "label".

Section 3.1.11 “Generic Attributes”

Completely specify how attribute/property transparency works.

Section 3.1.13 “Component Specialization Methods”

Add new method, encodeAll(), which is now the preferred method for developers to call to render a child or facet().

Section 4.1.4 “UlForm”

Document the new pr ependl d property and get Cont ai ner Cl i ent 1 d() method.

UlData Section 4.1.3.2 “Properties”

Added pr ot ect ed property for Dat aMbdel .

Ullnput Section 4.1.6 “Ullnput”

= Document the behavior of the r equi r edMessage, convert er Message and val i dat or Message properties.

Ullnput Section 4.1.6.3 “Methods”
= Add mention of resetValue() to the "Methods" section for Ullnput.

Section 4.1.19 “UlViewRoot”

= Change callsite for saveSerializedView and writeState().
= Change to clear the event queue after each phase if skipping to rendering response.

= JSP tag no longer deals with state saving.

Section 5.1.2 and 5.1.3 “ValueExpression Syntax” and “ValueExpression Semantics”

Removed and made reference to EL spec.

Section 5.2.1 “MethodExpression Syntax and Semantics”

Make reference to EL spec.

Chapter B Appendix B - Change Log B-91

Section 5.4 “Leveraging Java EE 5 Annotations in Managed Beans”

= This new section covers the modifications necessary to allow managed beans to be the target of container managed
dependency injection using the @Resour ce and @EJB annotations.

= Added section 5.4.1 that specifies how the @P0st Construct and @ eDest r oy annotations must be handled.

Section 5.5.3 “ExpressionFactory”

= Update signature of createValueExpresion() and createMethodExpression() to include ELContext as the first
argument.

Section 5.6.1.4 “ResourceBundle ELResolver for JSP Pages”

= This resolver, when coupled with the j avax. el . Resour ceBundl eELResol ver, allows the resolution of
ResourceBundles and entries therein via the EL. See also Section 5.6.2.6 “el.ResourceBundleELResolver” and
Section 5.6.2.7 “ResourceBundle ELResolver for Programmatic Access”.

Section 7.5.1 “Overview” ViewHandler

= Document new methods initView() and calculateCharacterEncoding();

Section 7.5.2 “Default ViewHandler Implementation”
= modify createView() to reflect current reality:

= Do the viewld discovery algorithm formerly in restoreView().

« Redirect to the context root if no viewld can be discerned.

« Do the existing processing.
= modify restoreView() to reflect current reality:

» Do the existing processing.

= Do the viewld discovery algorithm now in createView().

» If no viewld can be discovered, return null.

« Always call StateManager.restoreView().

« 1o longer set the character encoding, this has moved out to the Restore View phase implementation
= change callsite for saveSerializedView() to be saveView().

= added ViewHandler.calculateRenderKitld responsibility of returning the request parameter named
ResponseStateManager. RENDER_KIT ID _PARAM if not null.

State Saving Section 7.7.1 “Overview”

= Soften the wording about the separation between tree structure and component state, say it's only a recommendation
to keep these two separate.

Section 7.7.2 “State Saving Alternatives and Implications”

= Modified client state saving text to add "It is advisable that this information be encrypted and tamper evident, since it
is being sent down to the client, where it may persist for some time."

| B-92 JavaServer Faces Specification « June 2009

= Modified server state saving text to add "Implementations that wish to enable their saved state to fail over to a
different container instance must keep this in mind when implementing their server side state saving strategy. The
default implementation Serializes the view in both the client and server modes. In the server mode, this serialized
view is stored in the session and a unique key to retrieve the view is sent down to the client. By storing the serialized
view in the session, failover may happen using the usual mechanisms provided by the container."

= The values of all component attributes and properties must implement Ser i al i zabl e.
= New section 7.7.6 StateManager in the "Deprecated APIs" section (7.7)
= New section 7.7.7 ResponseStateManager in the "Deprecated APIs" section (7.7)

Section 8.4 “ResponseStateManager”

Describe the non-deprecated methods.
= Added verbiage about ResponseStateManager implementation's responsibility of writing out render kit identifier.
= Describe the isPostback() method.

Section 9.1 “UlComponent Custom Actions”

= Specify that i d is now rt exprval ue true.

Section 9.2.8 “Interoperability with JSP Template Text and Other Tag Libraries”

= Changes in the current version of the EL allow Faces applications to use JSTL <c: f or Each> tags with Faces
components as long as the i t ens attribute points to a deferred EL expression (ie, a #{} expression, as opposed to an
immediate ${} expression).

= Also, remove the requirements that <f : ver bat i n®» be used, and that components added to the tree
programmatically will only be rendered if they are the children of a r ender sChi | dr en==t r ue component

Section “Integration with JSP”
= Changes to account for moving from Ul Conponent Tag/Ul Conponent BodyTag to Ul Conponent ELTag.

Section 9.3.1.2 “Faces 1.0 and 1.1 Taglib migration story”

= Describe the new j sp- ver si on TLD based migration story.

Section 9.4 “JSF Core Tag Library”

= For listener/converter/validator tags, clarified that exceptions would be rethrown as JspException. Also specfy
JspException should be thrown if certain constraints are not met.

= Specify that tags may have non-deferred expressions as the value of their i d attribute.

= Added bi ndi ng attribute to listener/converter/validator tags.

= Added render ed attribute to verbatim tag.

= Specify that none of the tags in the JSF Core Tag Library may cause JavaScript to be rendered to the client.

Section 9.4.2 “<f:attribute>"

= Specify that the argument value must be interrogated to see if it isLiteralText(). If so, store in the attributes set, If not,
store in the ValueExpression set.

Chapter B Appendix B - Change Log B-93

Section 9.4.12 “<f:setPropertyActionListener>"
= New Section, document this new tag.

Section 9.4.21 “<f:view>"

= Added renderKitld attribute description to fiview;

Section 9.5 “Standard HTML RenderKit Tag Library”

= Specify how to handle action attributes that are string literals.

= Call out to TLDDocs for parts of the requirements. TLDDocs are now normative.

Section 11.2.6.2 “FacesServlet”

= Describe how the i ni t - par amthen the cont ext - par ammust be consulted for the lifecycleID for this
FacesSer vl et instance.

Section 11.3 “Deprecated APIs in the webapp package”

New section describing deprecated APIs. Previous section at this address moved to next section number.

Section 11.4.2 “Application Startup Behavior”

= Implementations may check for the presence of a servlet-class definition of class javax.faces.webapp.FacesServlet in
the web application deployment descriptor as a means to abort the configuration process and reduce startup time for
applications that do not use JavaServer Faces Technology.

Chapter A “XML Schema Definition for Application Configuration Resource file
= New appendix for XML Schema and DTD

| B-94 JavaServer Faces Specification « June 2009

	JavaServer™ Faces Specification
	Contents
	Preface
	Changes between 1.2 Final and Early Draft Review 2
	Section 2.1 “Request Processing Lifecycle Scenarios”
	Section 2.2 “Standard Request Processing Lifecycle Phases”
	Section 2.2.1 “Restore View”
	Section 2.2.2 “Apply Request Values”
	Section 2.2.2.1 “Apply Request Values Partial Processing”
	Section 2.2.3 “Process Validations”
	Section 2.2.3.1 “Partial Validations Partial Processing”
	Section 2.2.4 “Update Model Values”
	Section 2.2.4.1 “Update Model Values Partial Processing”
	Section 2.2.6 “Render Response”
	Section 2.5.2.4 “Localized Application Messages”
	Section 2.5.4 “Resource Handling”
	Section 2.5.5 “View Parameters”
	Section 2.5.6 “Bookmarkability”
	Section 2.5.7 “JSR 303 Bean Validation”
	Section 2.5.8 “Ajax”
	Section 2.5.9 “Component Behaviors”
	New Section 2.6 “Resource Handling”
	New Section 2.6.2 “Rendering Resources”
	New Section 2.6.2.1 “Relocatable Resources”
	New Section 2.6.2.2 “Resource Rendering Using Annotations”
	Section 3.1.8 “Component Tree Navigation”
	Section 3.1.10 “Managing Component Behavior”
	Section 3.1.11 “Generic Attributes”
	Section 3.1.11.1 “Special Attributes”
	Section 3.1.13 “Component Specialization Methods”
	Section 3.1.14 “Lifecycle Management Methods”
	Section 3.1.15 “Utility Methods”
	Section 3.2.6.1 “Properties”
	Section 3.2.7.2 “Methods”
	Section 3.2.8 “SystemEventListenerHolder”
	Section 3.3.2 “Converter”
	Section 3.4.1 “Overview”
	Section 3.4.2.6 “Event Broadcasting”
	Section 3.4.3.1 “Event Classes”
	Section 3.4.3.4 “Declarative Listener Registration”
	Section 3.4.3.5 “Listener Registration By Annotation”
	Section 3.5.2 “Validator Classes”
	Section 3.5.2 “Validator Classes”
	Section 3.5.2 “Validator Classes”
	Section 3.5.3 “Validation Registration”
	Section 3.5.5 “Standard Validator Implementations”
	Section 3.5.6 “Bean Validation Integration”
	Section 3.7 “Component Behavior Model”
	Section 4.1.19.2 “Properties”
	Specify the viewMap property on UIViewRoot.
	Section 4.1.19.3 “Methods”
	Section 4.1.19.4 “Events”
	Section 4.1.19.5 “Partial Processing”
	Section 4.2.1.2 “Methods”
	Section 3.6 “Composite User Interface Components”
	Section 5.2.1 “MethodExpression Syntax and Semantics”
	Section 5.4.1 “Managed Bean Lifecycle Annotations”
	Section 5.6.1.1 “Faces Implicit Object ELResolver For JSP” and Section 5.6.2.1 “Implicit Object ELResolver for Facelets and Programmatic Access”
	Section 5.6.1.2 “ManagedBean ELResolver”
	Section 5.6.2.1 “Implicit Object ELResolver for Facelets and Programmatic Access”
	Section 5.6.2.5 “Resource ELResolver”
	This section specifies the behavior of the Resource EL Resolver
	Section 5.6.2.2 “Composite Component Attributes ELResolver”
	Section 5.6.2.9 “ScopedAttribute ELResolver”
	Section 6.1.2 “Attributes”
	Section 6.1.8 “ResponseStream and ResponseWriter”
	Section 6.1.10 “Partial Processing Methods”
	Section 6.1.11 “Partial View Context”
	Section 6.1.12 “Access To The Current FacesContext Instance”
	Section 6.1.13 “CurrentPhaseId”
	Section 6.2 “ExceptionHandler”
	Section 6.7 “ExceptionHandlerFactory”
	Section 6.8 “ExternalContextFactory”
	Section 7.1.8 “ProjectStage Property”
	Section 7.1.13 “System Event Methods”
	Section 7.4.2 “Default NavigationHandler Algorithm”
	Section 7.5.1 “Overview”
	Section 7.5.2 “Default ViewHandler Implementation”
	Section 7.6 “ViewDeclarationLanguage”
	Section 8.1 “RenderKit”
	Section 8.2 “Renderer”
	Section 8.3 “ClientBehaviorRenderer”
	Section 9.4.3 “<f:convertDateTime>”
	Section 9.4.4 “<f:convertNumber>”
	Section 9.4.14 “<f:validateDoubleRange>”
	Section 9.4.16 “<f:validateRegex>”
	Section 9.4.17 “<f:validateLongRange>”
	Section 9.4.21 “<f:view>”
	Section “Facelets and its use in Web Applications”
	Section 10.4.1.1 “<f:ajax>”
	Section “Override default Ajax action. “button1” is associated with the Ajax “execute=’cancel’” action:”
	Section 10.4.1.5 “<f:validateRequired>”
	Section 11.1.3 “Application Configuration Parameters”
	Section 11.4.2 “Application Startup Behavior”
	Section 11.4.5 “Configuration Impact on JSF Runtime”
	Section 11.4.6 “Delegating Implementation Support”
	Section 11.4.7 “Ordering of Artifacts”
	Section 11.5 “Annotations that correspond to and may take the place of entries in the Application Configuration Resources”
	Section 12.2 “PhaseEvent”
	Chapter 13 “Ajax Integration
	Section 13.1 “JavaScript Resource”
	Section 13.1.1 “JavaScript Resource Loading”
	Section 13.1.1.1 “The Annotation Approach”
	Section 13.1.1.2 “The Resource API Approach”
	Section 13.1.1.3 “The Page D eclaration Language Approach”
	Section 13.2 “JavaScript Namespacing”
	Section 13.3 “Ajax Interaction”
	Section 13.3.1 “Sending an Ajax Request”
	Section 13.3.2 “Ajax Request Queueing”
	Section 13.3.3 “Request Callback Function”
	Section 13.3.4 “Receiving The Ajax Response”
	Section 13.3.5 “Monitoring Events On The Client”
	Section 13.3.5.1 “Monitoring Events For An Ajax Request”
	Section 13.3.5.2 “Monitoring Events For All Ajax Requests”
	Section 13.3.5.3 “Sending Events”
	Section 13.3.6 “Handling Errors On the Client”
	Section 13.3.6.1 “Handling Errors For An Ajax Request”
	Section 13.3.6.2 “Handling Errors For All Ajax Requests”
	Section 13.3.6.3 “Signaling Errors”
	Section 13.3.7 “Handling Errors On The Server”
	Section 13.4 “Partial View Traversal”
	Section 13.4.1 “Partial Traversal Strategy”
	Section 13.4.2 “Partial View Processing”
	Section 13.4.3 “Partial View Rendering”
	Section 13.4.4 “Sending The Response to The Client”
	Section 13.4.4.1 “Writing The Partial Response”
	Chapter 14 “JavaScript API
	Section 14.1 “Collecting and Encoding View State”
	Section 14.1.1 “Use Case”
	Section 14.2 “Initiating an Ajax Request”
	Section 14.2.1 “Usage”
	Section 14.2.3 “Default Values”
	Section 14.2.4 “Request Sending Specifics”
	Section 14.2.5 “Use Case”
	Section 14.5 “Determining An Application’s Project Stage”
	Section 14.4 “Registering Callback Functions”
	Section 14.4.1 “Request/Response Event Handling”
	Section 14.4.1.1 “Use Case”
	Section 14.4.2 “Error Handling”
	Section 14.4.2.1 “Use Case”
	Section 14.5 “Determining An Application’s Project Stage”
	Section 14.5.1 “Use Case”
	Section 14.6 “Script Chaining”
	Section 1.1 “XML Schema Definition for Application Configuration Resource file”
	Section 1.3 “XML Schema Definition for Partial Responses”
	Standard HTML RenderKit specification
	component-family: javax.faces.Graphic renderer-type: javax.faces.Image
	component-family: javax.faces.Output renderer-type: javax.faces.Body
	component-family: javax.faces.Output renderer-type: javax.faces.Head
	component-family: javax.faces.Output renderer-type: javax.faces.resource.Script
	component-family: javax.faces.Output renderer-type: javax.faces.resource.Stylesheet

	General Changes

	Compatibility with and Migration from JavaServer Faces 1.2
	Related Technologies
	Other Java™ Platform Specifications
	Related Documents and Specifications
	Terminology
	Providing Feedback
	Acknowledgements

	Overview
	1.1 Solving Practical Problems of the Web
	1.2 Specification Audience
	1.2.1 Page Authors
	1.2.2 Component Writers
	1.2.3 Application Developers
	1.2.4 Tool Providers
	1.2.5 JSF Implementors

	1.3 Introduction to JSF APIs
	1.3.1 package javax.faces
	1.3.2 package javax.faces.application
	1.3.3 package javax.faces.component
	1.3.4 package javax.faces.component.html
	1.3.5 package javax.faces.context
	1.3.6 package javax.faces.convert
	1.3.7 package javax.faces.el
	1.3.8 package javax.faces.lifecycle
	1.3.9 package javax.faces.event
	1.3.10 package javax.faces.render
	1.3.11 package javax.faces.validator
	1.3.12 package javax.faces.webapp

	Request Processing Lifecycle
	2.1 Request Processing Lifecycle Scenarios
	2.1.1 Non-Faces Request Generates Faces Response
	2.1.2 Faces Request Generates Faces Response
	2.1.3 Faces Request Generates Non-Faces Response

	2.2 Standard Request Processing Lifecycle Phases
	2.2.1 Restore View
	2.2.2 Apply Request Values
	2.2.2.1 Apply Request Values Partial Processing

	2.2.3 Process Validations
	2.2.3.1 Partial Validations Partial Processing

	2.2.4 Update Model Values
	2.2.4.1 Update Model Values Partial Processing

	2.2.5 Invoke Application
	2.2.6 Render Response

	2.3 Common Event Processing
	2.4 Common Application Activities
	2.4.1 Acquire Faces Object References
	2.4.1.1 Acquire and Configure Lifecycle Reference
	2.4.1.2 Acquire and Configure FacesContext Reference

	2.4.2 Create And Configure A New View
	2.4.2.1 Create A New View
	2.4.2.2 Configure the Desired RenderKit
	2.4.2.3 Configure The View’s Components
	2.4.2.4 Store the new View in the FacesContext

	2.5 Concepts that impact several lifecycle phases
	2.5.1 Value Handling
	2.5.1.1 Apply Request Values Phase
	2.5.1.2 Process Validators Phase
	2.5.1.3 Executing Validation
	2.5.1.4 Update Model Values Phase

	2.5.2 Localization and Internationalization (L10N/I18N)
	2.5.2.1 Determining the active Locale
	2.5.2.2 Determining the Character Encoding
	2.5.2.3 Localized Text
	2.5.2.4 Localized Application Messages

	2.5.3 State Management
	2.5.3.1 State Management Considerations for the Custom Component Author
	2.5.3.2 State Management Considerations for the JSF Implementor

	2.5.4 Resource Handling
	2.5.5 View Parameters
	2.5.6 Bookmarkability
	2.5.7 JSR 303 Bean Validation
	2.5.8 Ajax
	2.5.9 Component Behaviors
	2.5.10 System Events

	2.6 Resource Handling
	2.6.1 Packaging Resources
	2.6.1.1 Packaging Resources into the Web Application Root
	2.6.1.2 Packaging Resources into the Classpath
	2.6.1.3 Resource Identifiers
	2.6.1.4 Libraries of Localized and Versioned Resources

	2.6.2 Rendering Resources
	2.6.2.1 Relocatable Resources
	2.6.2.2 Resource Rendering Using Annotations

	User Interface Component Model
	3.1 UIComponent and UIComponentBase
	3.1.1 Component Identifiers
	3.1.2 Component Type
	3.1.3 Component Family
	3.1.4 ValueExpression properties
	3.1.5 Component Bindings
	3.1.6 Client Identifiers
	3.1.7 Component Tree Manipulation
	3.1.8 Component Tree Navigation
	3.1.9 Facet Management
	3.1.10 Managing Component Behavior
	3.1.11 Generic Attributes
	3.1.11.1 Special Attributes

	3.1.12 Render-Independent Properties
	3.1.13 Component Specialization Methods
	3.1.14 Lifecycle Management Methods
	3.1.15 Utility Methods

	3.2 Component Behavioral Interfaces
	3.2.1 ActionSource
	3.2.1.1 Properties
	3.2.1.2 Methods
	3.2.1.3 Events

	3.2.2 ActionSource2
	3.2.2.1 Properties
	3.2.2.2 Methods
	3.2.2.3 Events

	3.2.3 NamingContainer
	3.2.4 StateHolder
	3.2.4.1 Properties
	3.2.4.2 Methods
	3.2.4.3 Events

	3.2.5 PartialStateHolder
	3.2.6 ValueHolder
	3.2.6.1 Properties
	3.2.6.2 Methods
	3.2.6.3 Events

	3.2.7 EditableValueHolder
	3.2.7.1 Properties
	3.2.7.2 Methods
	3.2.7.3 Events

	3.2.8 SystemEventListenerHolder
	3.2.8.1 Properties
	3.2.8.2 Methods
	3.2.8.3 Events

	3.2.9 ClientBehaviorHolder

	3.3 Conversion Model
	3.3.1 Overview
	3.3.2 Converter
	3.3.3 Standard Converter Implementations

	3.4 Event and Listener Model
	3.4.1 Overview
	3.4.2 Application Events
	3.4.2.1 Event Classes
	3.4.2.2 Listener Classes
	3.4.2.3 Phase Identifiers
	3.4.2.4 Listener Registration
	3.4.2.5 Event Queueing
	3.4.2.6 Event Broadcasting

	3.4.3 System Events
	3.4.3.1 Event Classes
	3.4.3.2 Listener Classes
	3.4.3.3 Programmatic Listener Registration
	3.4.3.4 Declarative Listener Registration
	3.4.3.5 Listener Registration By Annotation
	3.4.3.6 Listener Registration By Application Configuration Resources
	3.4.3.7 Event Broadcasting

	3.5 Validation Model
	3.5.1 Overview
	3.5.2 Validator Classes
	3.5.3 Validation Registration
	3.5.4 Validation Processing
	3.5.5 Standard Validator Implementations
	3.5.6 Bean Validation Integration
	3.5.6.1 Bean Validator Activation
	3.5.6.2 Obtaining a ValidatorFactory
	3.5.6.3 Localization of Bean Validation Messages

	3.6 Composite User Interface Components
	3.6.1 Non-normative Background
	3.6.1.1 What does it mean to be a JSF User Interface component?
	3.6.1.2 How does one make a custom JSF User Interface component (JSF 1.2 and earlier)?
	3.6.1.3 How does one make a composite component?
	3.6.1.4 A simple composite component example
	3.6.1.5 Walk through of the run-time for the simple composite component example
	3.6.1.6 Composite Component Terms

	3.6.2 Normative Requirements
	3.6.2.1 Composite Component Metadata

	3.7 Component Behavior Model
	3.7.1 Overview
	3.7.2 Behavior Interface
	3.7.3 BehaviorBase
	3.7.4 The Client Behavior Contract
	3.7.5 ClientBehavorHolder
	3.7.6 ClientBehaviorRenderer
	3.7.7 ClientBehaviorContext
	3.7.8 ClientBehaviorHint
	3.7.9 ClientBehaviorBase
	3.7.10 Behavior Event / Listener Model
	3.7.10.1 Event Classes
	3.7.10.2 Listener Classes
	3.7.10.3 Listener Registration

	3.7.11 Ajax Behavior
	3.7.11.1 AjaxBehavior
	3.7.11.2 Ajax Behavior Event / Listener Model

	3.7.12 Adding Behavior To Components
	3.7.13 Behavior Registration
	3.7.13.1 XML Registration
	3.7.13.2 Registration By Annotation

	Standard User Interface Components
	4.1 Standard User Interface Components
	4.1.1 UIColumn
	4.1.1.1 Component Type
	4.1.1.2 Properties
	4.1.1.3 Methods
	4.1.1.4 Events

	4.1.2 UICommand
	4.1.2.1 Component Type
	4.1.2.2 Properties
	4.1.2.3 Methods
	4.1.2.4 Events

	4.1.3 UIData
	4.1.3.1 Component Type
	4.1.3.2 Properties
	4.1.3.3 Methods
	4.1.3.4 Events

	4.1.4 UIForm
	4.1.4.1 Component Type
	4.1.4.2 Properties
	4.1.4.3 Methods.
	4.1.4.4 Events

	4.1.5 UIGraphic
	4.1.5.1 Component Type
	4.1.5.2 Properties
	4.1.5.3 Methods
	4.1.5.4 Events

	4.1.6 UIInput
	4.1.6.1 Component Type
	4.1.6.2 Properties
	4.1.6.3 Methods
	4.1.6.4 Events

	4.1.7 UIMessage
	4.1.7.1 Component Type
	4.1.7.2 Properties
	4.1.7.3 Methods.
	4.1.7.4 Events

	4.1.8 UIMessages
	4.1.8.1 Component Type
	4.1.8.2 Properties
	4.1.8.3 Methods.
	4.1.8.4 Events

	4.1.9 UIOutcomeTarget
	4.1.9.1 Component Type
	4.1.9.2 Properties
	4.1.9.3 Methods
	4.1.9.4 Events

	4.1.10 UIOutput
	4.1.10.1 Component Type
	4.1.10.2 Properties
	4.1.10.3 Methods
	4.1.10.4 Events

	4.1.11 UIPanel
	4.1.11.1 Component Type
	4.1.11.2 Properties
	4.1.11.3 Methods
	4.1.11.4 Events

	4.1.12 UIParameter
	4.1.12.1 Component Type
	4.1.12.2 Properties
	4.1.12.3 Methods
	4.1.12.4 Events

	4.1.13 UISelectBoolean
	4.1.13.1 Component Type
	4.1.13.2 Properties
	4.1.13.3 Methods
	4.1.13.4 Events

	4.1.14 UISelectItem
	4.1.14.1 Component Type
	4.1.14.2 Properties
	4.1.14.3 Methods
	4.1.14.4 Events

	4.1.15 UISelectItems
	4.1.15.1 Component Type
	4.1.15.2 Properties
	4.1.15.3 Methods
	4.1.15.4 Events

	4.1.16 UISelectMany
	4.1.16.1 Component Type
	4.1.16.2 Properties
	4.1.16.3 Methods
	4.1.16.4 Events

	4.1.17 UISelectOne
	4.1.17.1 Component Type
	4.1.17.2 Properties
	4.1.17.3 Methods
	4.1.17.4 Events

	4.1.18 UIViewParameter
	4.1.19 UIViewRoot
	4.1.19.1 Component Type
	4.1.19.2 Properties
	4.1.19.3 Methods
	4.1.19.4 Events
	4.1.19.5 Partial Processing

	4.2 Standard UIComponent Model Beans
	4.2.1 DataModel
	4.2.1.1 Properties
	4.2.1.2 Methods
	4.2.1.3 Events
	4.2.1.4 Concrete Implementations

	4.2.2 SelectItem
	4.2.2.1 Properties
	4.2.2.2 Methods
	4.2.2.3 Events

	4.2.3 SelectItemGroup
	4.2.3.1 Properties
	4.2.3.2 Methods
	4.2.3.3 Events

	Expression Language and Managed Bean Facility
	5.1 Value Expressions
	5.1.1 Overview
	5.1.2 Value Expression Syntax and Semantics

	5.2 MethodExpressions
	5.2.1 MethodExpression Syntax and Semantics

	5.3 The Managed Bean Facility
	5.3.1 Managed Bean Configuration Example

	5.4 Leveraging Java EE 5 Annotations in Managed Beans
	5.4.1 Managed Bean Lifecycle Annotations

	5.5 How Faces Leverages the Unified EL
	5.5.1 ELContext
	5.5.1.1 Lifetime, Ownership and Cardinality
	5.5.1.2 Properties
	5.5.1.3 Methods
	5.5.1.4 Events

	5.5.2 ELResolver
	5.5.2.1 Lifetime, Ownership, and Cardinality
	5.5.2.2 Properties
	5.5.2.3 Methods
	5.5.2.4 Events

	5.5.3 ExpressionFactory
	5.5.3.1 Lifetime, Ownership, and Cardinality
	5.5.3.2 Properties
	5.5.3.3 Methods
	5.5.3.4 Events

	5.6 ELResolver Instances Provided by Faces
	5.6.1 Faces ELResolver for JSP Pages
	5.6.1.1 Faces Implicit Object ELResolver For JSP
	5.6.1.2 ManagedBean ELResolver
	5.6.1.3 Resource ELResolver
	5.6.1.4 ResourceBundle ELResolver for JSP Pages
	5.6.1.5 ELResolvers in the application configuration resources
	5.6.1.6 VariableResolver Chain Wrapper
	5.6.1.7 PropertyResolver Chain Wrapper
	5.6.1.8 ELResolvers from Application.addELResolver()

	5.6.2 ELResolver for Facelets and Programmatic Access
	5.6.2.1 Implicit Object ELResolver for Facelets and Programmatic Access
	5.6.2.2 Composite Component Attributes ELResolver
	5.6.2.3 The CompositeELResolver
	5.6.2.4 ManagedBean ELResolver
	5.6.2.5 Resource ELResolver
	5.6.2.6 el.ResourceBundleELResolver
	5.6.2.7 ResourceBundle ELResolver for Programmatic Access
	5.6.2.8 Map, List, Array, and Bean ELResolvers
	5.6.2.9 ScopedAttribute ELResolver

	5.7 Current Expression Evaluation APIs
	5.7.1 ELResolver
	5.7.2 ValueExpression
	5.7.3 MethodExpression
	5.7.4 Expression Evaluation Exceptions

	5.8 Deprecated Expression Evaluation APIs
	5.8.1 VariableResolver and the Default VariableResolver
	5.8.2 PropertyResolver and the Default PropertyResolver
	5.8.3 ValueBinding
	5.8.4 MethodBinding
	5.8.5 Expression Evaluation Exceptions

	Per-Request State Information
	6.1 FacesContext
	6.1.1 Application
	6.1.2 Attributes
	6.1.3 ELContext
	6.1.4 ExternalContext
	6.1.4.1 Flash

	6.1.5 ViewRoot
	6.1.6 Message Queue
	6.1.7 RenderKit
	6.1.8 ResponseStream and ResponseWriter
	6.1.9 Flow Control Methods
	6.1.10 Partial Processing Methods
	6.1.11 Partial View Context
	6.1.12 Access To The Current FacesContext Instance
	6.1.13 CurrentPhaseId
	6.1.14 ExceptionHandler

	6.2 ExceptionHandler
	6.2.1 Default ExceptionHandler implementation
	6.2.2 Backwards Compatible ExceptionHandler
	6.2.3 Default Error Page

	6.3 FacesMessage
	6.4 ResponseStream
	6.5 ResponseWriter
	6.6 FacesContextFactory
	6.7 ExceptionHandlerFactory
	6.8 ExternalContextFactory

	Application Integration
	7.1 Application
	7.1.1 ActionListener Property
	7.1.2 DefaultRenderKitId Property
	7.1.3 NavigationHandler Property
	7.1.4 StateManager Property
	7.1.5 ELResolver Property
	7.1.6 ELContextListener Property
	7.1.7 ViewHandler Property
	7.1.8 ProjectStage Property
	7.1.9 Acquiring ExpressionFactory Instance
	7.1.10 Programmatically Evaluating Expressions
	7.1.11 Object Factories
	7.1.11.1 Default Validator Ids

	7.1.12 Internationalization Support
	7.1.13 System Event Methods
	7.1.13.1 Subscribing to system events
	7.1.13.2 Unsubscribing from system events

	7.2 ApplicationFactory
	7.3 Application Actions
	7.4 NavigationHandler
	7.4.1 Overview
	7.4.2 Default NavigationHandler Algorithm
	7.4.3 Example NavigationHandler Configuration

	7.5 ViewHandler
	7.5.1 Overview
	7.5.2 Default ViewHandler Implementation

	7.6 ViewDeclarationLanguage
	7.6.1 ViewDeclarationLanguageFactory
	7.6.2 Default ViewDeclarationLanguage Implementation
	7.6.2.1 ViewDeclarationLanguage.createView()
	7.6.2.2 ViewDeclarationLanguage.buildView()
	7.6.2.3 ViewDeclarationLanguage.getComponentMetadata()
	7.6.2.4 ViewDeclarationLanguage.getViewMetadata() and getViewParameters()
	7.6.2.5 ViewDeclarationLanguage.getScriptComponentResource()
	7.6.2.6 ViewDeclarationLanguage.renderView()
	7.6.2.7 ViewDeclarationLanguage.restoreView()

	7.7 StateManager
	7.7.1 Overview
	7.7.2 State Saving Alternatives and Implications
	7.7.3 State Saving Methods.
	7.7.4 State Restoring Methods
	7.7.5 Convenience Methods

	7.8 ResourceHandler
	7.9 Deprecated APIs
	7.9.1 PropertyResolver Property
	7.9.2 VariableResolver Property
	7.9.3 Acquiring ValueBinding Instances
	7.9.4 Acquiring MethodBinding Instances
	7.9.5 Object Factories
	7.9.6 StateManager
	7.9.7 ResponseStateManager

	Rendering Model
	8.1 RenderKit
	8.2 Renderer
	8.3 ClientBehaviorRenderer
	8.3.1 ClientBehaviorRenderer Registration

	8.4 ResponseStateManager
	8.5 RenderKitFactory
	8.6 Standard HTML RenderKit Implementation
	8.7 The Concrete HTML Component Classes

	Integration with JSP
	9.1 UIComponent Custom Actions
	9.2 Using UIComponent Custom Actions in JSP Pages
	9.2.1 Declaring the Tag Libraries
	9.2.2 Including Components in a Page
	9.2.3 Creating Components and Overriding Attributes
	9.2.4 Deleting Components on Redisplay
	9.2.5 Representing Component Hierarchies
	9.2.6 Registering Converters, Event Listeners, and Validators
	9.2.7 Using Facets
	9.2.8 Interoperability with JSP Template Text and Other Tag Libraries
	9.2.9 Composing Pages from Multiple Sources

	9.3 UIComponent Custom Action Implementation Requirements
	9.3.1 Considerations for Custom Actions written for JavaServer Faces 1.1 and 1.0
	9.3.1.1 Past and Present Tag constraints
	9.3.1.2 Faces 1.0 and 1.1 Taglib migration story

	9.4 JSF Core Tag Library
	9.4.1 <f:actionListener>
	9.4.2 <f:attribute>
	9.4.3 <f:convertDateTime>
	9.4.4 <f:convertNumber>
	9.4.5 <f:converter>
	9.4.6 <f:facet>
	9.4.7 <f:loadBundle>
	9.4.8 <f:param>
	9.4.9 <f:phaseListener>
	9.4.10 <f:selectItem>
	9.4.11 <f:selectItems>
	9.4.12 <f:setPropertyActionListener>
	9.4.13 <f:subview>
	9.4.14 <f:validateDoubleRange>
	9.4.15 <f:validateDoubleRange>
	9.4.16 <f:validateRegex>
	9.4.17 <f:validateLongRange>
	9.4.18 <f:validator>
	9.4.19 <f:valueChangeListener>
	9.4.20 <f:verbatim>
	9.4.21 <f:view>

	9.5 Standard HTML RenderKit Tag Library

	Facelets and its use in Web Applications
	10.1 Non-normative Background
	10.1.1 Differences between JSP and Facelets
	10.1.2 Differences between Pre JSF 2.0 Facelets and Facelets in JSF 2.0

	10.2 Java Programming Language Specification for Facelets in JSF 2.0
	10.2.1 Specification of the ViewDeclarationLanguage Implementation for Facelets for JSF 2.0

	10.3 XHTML Specification for Facelets for JSF 2.0
	10.3.1 General Requirements
	10.3.2 Facelet Tag Library mechanism
	10.3.3 Requirements specific to composite components
	10.3.3.1 Declaring a composite component library for use in a Facelet page
	10.3.3.2 Creating an instance of a top level component
	10.3.3.3 Populating a top level component instance with children

	10.4 Standard Facelet Tag Libraries
	10.4.1 JSF Core Tag Library
	10.4.1.1 <f:ajax>
	10.4.1.2 <f:event>
	10.4.1.3 <f:metadata>
	10.4.1.4 <f:validateBean>
	10.4.1.5 <f:validateRequired>

	10.4.2 Standard HTML RenderKit Tag Library
	10.4.3 Facelet Templating Tag Library
	10.4.4 Composite Component Tag Library
	10.4.5 JSTL Core and Function Tag Libraries

	10.5 Assertions relating to the construction of the view hierarchy

	Using JSF in Web Applications
	11.1 Web Application Deployment Descriptor
	11.1.1 Servlet Definition
	11.1.2 Servlet Mapping
	11.1.3 Application Configuration Parameters

	11.2 Included Classes and Resources
	11.2.1 Application-Specific Classes and Resources
	11.2.2 Servlet and JSP API Classes (javax.servlet.*)
	11.2.3 JSP Standard Tag Library (JSTL) API Classes (javax.servlet.jsp.jstl.*)
	11.2.4 JSP Standard Tag Library (JSTL) Implementation Classes
	11.2.5 JavaServer Faces API Classes (javax.faces.*)
	11.2.6 JavaServer Faces Implementation Classes
	11.2.6.1 FactoryFinder
	11.2.6.2 FacesServlet
	11.2.6.3 UIComponentELTag
	11.2.6.4 FacetTag
	11.2.6.5 ValidatorTag

	11.3 Deprecated APIs in the webapp package
	11.3.1 AttributeTag
	11.3.2 ConverterTag
	11.3.3 UIComponentBodyTag
	11.3.4 UIComponentTag
	11.3.5 ValidatorTag

	11.4 Application Configuration Resources
	11.4.1 Overview
	11.4.2 Application Startup Behavior
	11.4.3 Application Shutdown Behavior
	11.4.4 Application Configuration Resource Format
	11.4.5 Configuration Impact on JSF Runtime
	11.4.6 Delegating Implementation Support
	11.4.7 Ordering of Artifacts
	11.4.8 Example Application Configuration Resource

	11.5 Annotations that correspond to and may take the place of entries in the Application Configuration Resources
	11.5.1 Requirements for scanning of classes for annotations

	Lifecycle Management
	12.1 Lifecycle
	12.2 PhaseEvent
	12.3 PhaseListener
	12.4 LifecycleFactory

	Ajax Integration
	13.1 JavaScript Resource
	13.1.1 JavaScript Resource Loading
	13.1.1.1 The Annotation Approach
	13.1.1.2 The Resource API Approach
	13.1.1.3 The Page D eclaration Language Approach

	13.2 JavaScript Namespacing
	13.3 Ajax Interaction
	13.3.1 Sending an Ajax Request
	13.3.2 Ajax Request Queueing
	13.3.3 Request Callback Function
	13.3.4 Receiving The Ajax Response
	13.3.5 Monitoring Events On The Client
	13.3.5.1 Monitoring Events For An Ajax Request
	13.3.5.2 Monitoring Events For All Ajax Requests
	13.3.5.3 Sending Events

	13.3.6 Handling Errors On the Client
	13.3.6.1 Handling Errors For An Ajax Request
	13.3.6.2 Handling Errors For All Ajax Requests
	13.3.6.3 Signaling Errors

	13.3.7 Handling Errors On The Server

	13.4 Partial View Traversal
	13.4.1 Partial Traversal Strategy
	13.4.2 Partial View Processing
	13.4.3 Partial View Rendering
	13.4.4 Sending The Response to The Client
	13.4.4.1 Writing The Partial Response

	JavaScript API
	14.1 Collecting and Encoding View State
	14.1.1 Use Case

	14.2 Initiating an Ajax Request
	14.2.1 Usage
	14.2.2 Keywords
	14.2.3 Default Values
	14.2.4 Request Sending Specifics
	14.2.5 Use Case

	14.3 Processing The Ajax Response
	14.4 Registering Callback Functions
	14.4.1 Request/Response Event Handling
	14.4.1.1 Use Case

	14.4.2 Error Handling
	14.4.2.1 Use Case

	14.5 Determining An Application’s Project Stage
	14.5.1 Use Case

	14.6 Script Chaining

	Appendix A - JSF Metadata
	1.1 XML Schema Definition for Application Configuration Resource file
	1.2 XML Schema Definition For Facelet Taglib
	1.3 XML Schema Definition for Partial Responses
	1.4 XML Schema Definition for Composite Components

	Appendix B - Change Log
	2.1 Changes Between 1.1 and 1.2
	2.1.0.1 Guide to Deprecated Methods Relating to the Unified EL and their Corresponding Replacements

